STARFM算法生成湿地类型TM反射率数据的应用评价  被引量:3

APPLICATION EVALUATION OF STARFM ALGORITHM IN GENERATING WETLAND-TYPE TM REFLECTANCE DATA

在线阅读下载全文

作  者:赵艳丽[1] 李大成[1] 贾琇明[1] 崔鹏燕 

机构地区:[1]太原理工大学测绘科学与技术系,山西太原030024

出  处:《计算机应用与软件》2016年第3期267-270,283,共5页Computer Applications and Software

基  金:国家高技术研究发展计划项目(2009AA122002)

摘  要:当前数据获取条件下,很难直接获得兼具高时间与高空间分辨率的多光谱遥感数据,提出利用STARFM(Spatial and Temporal Adaptive Reflection Fusion Model)算法来合成高时间序列的高空间分辨率数据。该算法在我国地理区域的适用性与预测精度验证等工作尚未充分展开。为此,以内蒙古呼伦湖湿地自然保护区为研究样区,并借助于Landsat-5 TM(Thematic Mapper)与高时序MODIS反射率产品,利用STARFM算法生成具有高时序特征的TM数据,进而将其与真实TM数据进行对比验证分析。结果表明:STARFM算法能够在空间上保持一定预测精度的条件下,对湿地区域内不同地物类别随时相的变化特征具有较好的预测能力,尤其适用于对反射特征随时相变化较小的湿地区域进行时空拟合或数据预测研究。Multispectral remote sensing data with both high temporal and high spatial resolutions can hardly be obtained directly under current data acquisition conditions. We proposed to us STARFM( spatial and temporal adaptive reflectance fusion model) to synthesise the high time series data with high spatial resolution. Nevertheless,the applicability of this model for the geographic areas in China and its prediction precision validation have not yet been substantially done. Accordingly,the Hulun Wetland Nature Reserve in Inner Mongolia is selected as the study area,and with the help of Landsat-5 TM data and high time series MODIS reflectance products,we used STARFM algorithm to generate the TM data with high time series feature,and then made the comparative validation analysis on it with the actual TM reflectance data. Result showed that the STARFM algorithm has a higher prediction capability on the phase features of different terrain categories in wetland area varying along with time phases under the condition of preserving certain prediction accuracy in space,it is particularly suitable for the spatiotemporal fitting or data prediction research in those wetland areas where the reflection characteristics change little along with the time phases.

关 键 词:呼伦湖湿地 STARFM 高时空分辨率 Landsat-5 TM 

分 类 号:TP751[自动化与计算机技术—检测技术与自动化装置]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象