Low substrate temperature deposition of transparent and conducting ZnO:Al thin films by RF magnetron sputtering  被引量:1

Low substrate temperature deposition of transparent and conducting ZnO:Al thin films by RF magnetron sputtering

在线阅读下载全文

作  者:Ravindra Waykar Amit Pawbake Rupali Kulkarni Ashok Jadhavar Adinath Funde Vaishali Waman Rupesh Dewan Habib Pathan Sandesh Jadkar 

机构地区:[1]School of Energy Studies,Savitribai Phule Pune University,Pune 411007,India [2]Modern College of Arts,Science and Commerce,Shivajinagar,Pune 411 005,India [3]Department of Physics,Savitribai Phule Pune University,Pune 411 007,India

出  处:《Journal of Semiconductors》2016年第4期24-31,共8页半导体学报(英文版)

基  金:the Department of Science and Technology(DST)and the Ministry of New and Renewable Energy(MNRE),Government of India for the financial support;the University Grants Commission,New Delhi for special financial support under the UPE program

摘  要:Transparent and conducting Al-doped ZnO(ZnO:Al) films were prepared on glass substrate using the RF sputtering method at different substrate temperatures from room temperature(RT) to 200 ℃. The structural,morphological, electrical and optical properties of these films were investigated using a variety of characterization techniques such as low angle XRD, Raman spectroscopy, X-ray photoelectron spectroscopy(XPS), field-emission scanning electron microscopy(FE-SEM), Hall measurement and UV–visible spectroscopy. The electrical properties showed that films deposited at RT have the lowest resistivity and it increases with an increase in the substrate temperature whereas carrier mobility and concentration decrease with an increase in substrate temperature. Low angle XRD and Raman spectroscopy analysis reavealed that films are highly crystalline with a hexagonal wurtzite structure and a preferred orientation along the c-axis. The FE-SEM analysis showed that the surface morphology of films is strongly dependent on the substrate temperature. The band gap decreases from 3.36 to 3.29 e V as the substrate temperature is increased from RT to 200 ℃. The fundamental absorption edge in the UV region shifts towards a longer wavelength with an increase in substrate temperature and be attributed to the Burstein-Moss shift. The synthesized films showed an average transmission(〉 85%) in the visible region, which signifies that synthesized ZnO:Al films can be suitable for display devices and solar cells as transparent electrodes.Transparent and conducting Al-doped ZnO(ZnO:Al) films were prepared on glass substrate using the RF sputtering method at different substrate temperatures from room temperature(RT) to 200 ℃. The structural,morphological, electrical and optical properties of these films were investigated using a variety of characterization techniques such as low angle XRD, Raman spectroscopy, X-ray photoelectron spectroscopy(XPS), field-emission scanning electron microscopy(FE-SEM), Hall measurement and UV–visible spectroscopy. The electrical properties showed that films deposited at RT have the lowest resistivity and it increases with an increase in the substrate temperature whereas carrier mobility and concentration decrease with an increase in substrate temperature. Low angle XRD and Raman spectroscopy analysis reavealed that films are highly crystalline with a hexagonal wurtzite structure and a preferred orientation along the c-axis. The FE-SEM analysis showed that the surface morphology of films is strongly dependent on the substrate temperature. The band gap decreases from 3.36 to 3.29 e V as the substrate temperature is increased from RT to 200 ℃. The fundamental absorption edge in the UV region shifts towards a longer wavelength with an increase in substrate temperature and be attributed to the Burstein-Moss shift. The synthesized films showed an average transmission(〉 85%) in the visible region, which signifies that synthesized ZnO:Al films can be suitable for display devices and solar cells as transparent electrodes.

关 键 词:ZnO thin film substrate temperature optical properties 

分 类 号:TN304.21[电子电信—物理电子学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象