A physical model of hole mobility for germanium-on-insulator pMOSFETs  被引量:1

A physical model of hole mobility for germanium-on-insulator pMOSFETs

在线阅读下载全文

作  者:袁文宇 徐静平 刘璐 黄勇 程智翔 

机构地区:[1]School of Optical and Electronic Information, Huazhong University of Science and Technology

出  处:《Journal of Semiconductors》2016年第4期50-56,共7页半导体学报(英文版)

基  金:Project supported by the National Natural Science Foundation of China(Nos.61274112,61176100,61404055)

摘  要:A physical model of hole mobility for germanium-on-insulator p MOSFETs is built by analyzing all kinds of scattering mechanisms, and a good agreement of the simulated results with the experimental data is achieved, confirming the validity of this model. The scattering mechanisms involved in this model include acoustic phonon scattering, ionized impurity scattering, surface roughness scattering, coulomb scattering and the scattering caused by Ge film thickness fluctuation. The simulated results show that the coulomb scattering from the interface charges is responsible for the hole mobility degradation in the low-field regime and the surface roughness scattering limits the hole mobility in the high-field regime. In addition, the effects of some factors, e.g. temperature, doping concentration of the channel and the thickness of Ge film, on degradation of the mobility are also discussed using the model, thus obtaining a reasonable range of the relevant parameters.A physical model of hole mobility for germanium-on-insulator p MOSFETs is built by analyzing all kinds of scattering mechanisms, and a good agreement of the simulated results with the experimental data is achieved, confirming the validity of this model. The scattering mechanisms involved in this model include acoustic phonon scattering, ionized impurity scattering, surface roughness scattering, coulomb scattering and the scattering caused by Ge film thickness fluctuation. The simulated results show that the coulomb scattering from the interface charges is responsible for the hole mobility degradation in the low-field regime and the surface roughness scattering limits the hole mobility in the high-field regime. In addition, the effects of some factors, e.g. temperature, doping concentration of the channel and the thickness of Ge film, on degradation of the mobility are also discussed using the model, thus obtaining a reasonable range of the relevant parameters.

关 键 词:GeOI pMOSFETs hole mobility scattering mechanisms 

分 类 号:TN386[电子电信—物理电子学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象