检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]福州大学经济与管理学院,福建福州350108
出 处:《系统工程学报》2016年第1期13-23,共11页Journal of Systems Engineering
基 金:国家自然科学基金重点资助项目(71231003);国家自然科学基金资助项目(71171055);高等学校博士学科点专项科研基金资助项目(20113514110009);国家教育部新世纪优秀人才支持计划资助项目(NCET-10-0020);福建省社会科学规划资助项目(2012C022)
摘 要:针对现实合作中存在模糊联盟的情况,利用Choquet积分定义了模糊联盟合作对策τ值,证明了其存在性、唯一性和其他重要性质,讨论了其和模糊核心的关系,并给出凸模糊联盟合作对策τ值的计算公式.最后通过一个算例说明该τ值的有效性与合理性.研究发现,基于Choquet积分的模糊联盟合作对策τ值是对清晰联盟合作对策τ值的扩展,而清晰联盟合作对策τ值仅是其特例.特别地,对于凸模糊联盟合作对策,其τ值计算过程可以简化.Considering fuzzy coalitions appearing in the practical cooperation, this paper defines the τ-value for the fuzzy cooperative game with Choquet integral, and proves its existence, uniqueness and some important properties. The relation between the τ-value and the fuzzy core is discussed. The computational formula ofτ-value for the convex fuzzy cooperative game is given. Finally, the effectiveness and rationality of the τ-value is illustrated by a numerical example. The result shows that the τ-value for the fuzzy cooperative game with Choquet integral is an extension of the τ-value for crisp cooperative game. Especially, for the convex fuzzy cooperative game, the computational process of the τ-value can be simplified.
关 键 词:模糊联盟合作对策 CHOQUET积分 τ值 对策论 模糊集
分 类 号:O225[理学—运筹学与控制论]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.175