混合退火粒子滤波在MIMO-OFDM信道估计中的应用  被引量:4

Research on Application of Hybrid Annealed Particle Filter Algorithm in MIMO-OFDM Channel Estimation

在线阅读下载全文

作  者:陈西宏[1] 谢泽东[1] 刘晓鹏[1] 薛伦生[1] 赵宇[1] 

机构地区:[1]空军工程大学防空反导学院,西安710051

出  处:《空军工程大学学报(自然科学版)》2016年第2期47-52,共6页Journal of Air Force Engineering University(Natural Science Edition)

基  金:国家自然科学基金(611172169)

摘  要:MIMO-OFDM系统信道估计是接收机进行信号相干解调的关键。针对MIMO-OFDM系统面临的非高斯噪声信道环境,结合改进的混合退火建议分布,将混合退火粒子滤波改进算法用于对MIMO-OFDM系统进行信道估计。在建立系统状态空间模型和分析混合退火建议分布基础上,将模糊推理系统用于动态产生退火参数,得到混合退火粒子滤波改进算法;将其用于对MIMO-OFDM系统进行信道估计,并对信道估计误码率、归一化均方误差和算法复杂度进行了仿真分析。仿真结果表明,与扩展卡尔曼滤波、粒子滤波、混合退火粒子滤波算法相比,混合退火粒子滤波改进算法在非高斯噪声信道环境下能够有效降低系统误码率;同时,可用较少的采样粒子获得较好的系统性能。MIMO-OFDM system channel estimation is a key of coherent demodulation for signal receiver. Aimed at the fact that MIMO-OFDM system is faced with a non-gauss noise, combined with the improved proposal distribution, an improved hybrid annealed particle filter algorithm is used to estimate the MIMO -OFDM channel. On the basis of building the state-space model of system and analyzing the proposal distri- bution of hybrid annealed, the fuzzy inference system is used to get dynamic hybrid annealed parameters, and the improved hybrid annealed particle filter algorithm is obtained. The improved hybrid annealed particle filter algorithm is used to estimate the channel of the MIMO-OFDM system. In this process, the bit error rate (BER), the normalized mean square error (NMSE) and the algorithm complexity of the channel estimation are simulated. The simulation results show that compared with the extended Kalman filter, the particle filter and hybrid annealed particle filter algorithm, the improved hybrid annealed particle filter algorithm can reduce effectively the bite error rate this can also improve the performance of system of system in non-gauss channel, and at the same by using a small amount of sampled particles.

关 键 词:MIMO-OFDM 信道估计 混合退火粒子滤波 

分 类 号:TN92[电子电信—通信与信息系统]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象