检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李龙跃[1] 刘付显[1] 史向峰[1] 梅颖颖[2]
机构地区:[1]空军工程大学防空反导学院,陕西西安710051 [2]重庆南开中学,重庆400030
出 处:《系统工程与电子技术》2016年第5期1067-1073,共7页Systems Engineering and Electronics
基 金:全军军事学研究生项目资助课题
摘 要:未来的来袭导弹可能具备较强的机动性,其弹道不可预测,针对拦截弹追击此类目标的追逃问题,基于微分对策(differential game,DG)理论建立追逃博弈模型并给出求解方法。模型在分析两者相对运动的基础上,考虑地球重力和自转的影响,以推力角为控制变量,离地高度、速度和经度角为状态变量,建立微分方程组。然后将追逃DG模型转化为单边最优对策问题;并给出改进的高精度五阶Gauss-Lobatto多项式配点法来近似状态变量对时间的导数,将微分方程组转换为代数约束,降低非线性规划问题复杂程度。最后给出了本文研究的仿真实例。Future incoming missiles may have a large maneuvering potential and can perform random ma- neuvers, rendering their trajectory unpredictable. For the pursuit-evasion game of an interceptor tries to inter- cept ballistic missile warhead, the pursuit-evasion game based differential game (DG) theory is modeled and the collocation solving method is given. The differential equations model takes the thrust angle as control variable and flight height, velocity, longitude as state variables, it also considers earth gravity and rotation effects. We transform the two-side DG problem into a single objective problem, and then give the collocation solving meth- od. The method employs the fifth degree Gauss-Lobatto quadrature rule with improved accuracy to approximate describe the time derivative of state, after that we transform differential equations to algebraic equations. Ex- perimental study verifies the model and the proposed method.
关 键 词:追逃对策 微分建模 Gauss-Lobatto配点法
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.74