检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]解放军理工大学野战工程学院,江苏南京210007 [2]陆军通信训练基地,河北张家口075100
出 处:《解放军理工大学学报(自然科学版)》2016年第2期174-179,共6页Journal of PLA University of Science and Technology(Natural Science Edition)
基 金:国家自然科学基金资助项目(61473263)
摘 要:针对滚动轴承故障诊断问题,在分析传统的误差反向传播(BP)算法、莱文伯格马夸特(LM)算法等经典人工神经网络训练方法的基础上,提出了差分进化训练算法。在选取差分进化策略时,取消了变异个体选取限制,从而加快了算法收敛速度。采用不同故障部位和程度的滚动轴承故障实验数据构成样本集合,并分别运用最速下降法、LM算法和差分进化算法对相同结构的人工神经网络进行训练,对比分析其故障分类性能。实验结果表明,差分进化算法能较好地识别滚动轴承故障,准确度较高,总体上与LM算法相当,且其在多次实验中故障识别率的最大值与最小值差别较小,具有较好的稳定性,同时该算法避免了LM算法存在的"过学习"问题。Based on the classical training algorithms of artificial neural networks such as traditional backpropagation algorithm(BP)and Levenberg-Marquardt(LM)algorithm,the differential evolution(DE)training algorithm was proposed for rolling bearing fault diagnosis.By cancelling the selection limits of variation individual when choosing the strategies of DE,the convergence speed of the algorithm was improved.Using six collections of rolling bearing fault samples at different positions and different levels,artificial neural networks with the same structure were trained by steepest decent algorithm,LM algorithm and DE algorithm,respectively.Fault classification properties were analyzed comparably.The results show that the DE algorithm can identify the faults of rolling bearings well,and it is nearly the same to LM algorithm.The difference between the maximum and the minimum in fault identification is small and shows good stability.The method avoids the problem of "over-fitting" that exists in LM algorithm.
关 键 词:差分进化 训练算法 莱文伯格马夸特算法 滚动轴承 故障诊断
分 类 号:TP18[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.62