正态分布的贝叶斯网络火灾数据融合预警研究  被引量:9

Research on early warning of fire data fusion of Bayesian network based on normal distribution

在线阅读下载全文

作  者:金杉[1,2] 崔文 金志刚[1] 

机构地区:[1]天津大学电子信息工程学院,天津300072 [2]天津市河西区公安消防支队司令部信通科,天津300222 [3]天津市南开中医院信息科,天津300102

出  处:《计算机应用研究》2016年第5期1473-1476,1485,共5页Application Research of Computers

基  金:国家自然科学基金资助项目(61201179)

摘  要:近年来,WSN应用趋向于网内节点数量增多、模块功能多样、应用环境复杂,由此基于WSN的火灾监测预警系统容易因节点故障出现数据融合异常的现象。为提高火灾数据融合精度,引入高斯模型,通过对不同节点间同类信息融合形成的熵值,表示融合结果的不确定性,以鉴定融合效果。由此推理出一种正态分布的贝叶斯网络算法。在仿真实验中,将三种常用火灾传感器探测信息融合,分析改进后的静态、动态贝叶斯网络特点。用FDS平台模拟火灾场景,实验得到探测信息离散区间与发生率,再以Bayesia Lab计算输出节点的条件概率。最后通过Visual C++离散化选取探测阈值下限的判定依据,实现全网信息融合,作出正确、快速的报警反应。In recent years,application of WSN tends to increasing node number,diversing module functions and complex application environment. Fusion data of fire monitoring and warning system are easy to be abnormal for node failure. In order to improve the precision of fire fusion data,this paper introduced the Gauss model. According to the entropy from fusing similar information between nodes,it ultilized the fusion outcome to express uncertainty. And it identified the fusion effect. The data fusion of Bayesian network based on the normal distribution was reasoning. In the simulation experiment,3 kinds of commonly used fire detection information were fusion. The improved static and dynamic Bayesian networks were used to be analysis. Simulating fire scene with FDS,detection information discrete interval and incidence could be obtained by experiment. The conditional probability of the output nodes was calculated with Bayesia Lab. Finally,the conclusion was obtained with Visual C + + and the discretization step. It was the basis of selecting the threshold limit of detection information. And the early fire alarm response could be accurate fast recation.

关 键 词:正态分布 贝叶斯网络 火灾数据融合 预警 

分 类 号:TP393.09[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象