机构地区:[1]State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China [2]College of Resources and Environmental Sciences, Xinjiang University, Urumqi 830046, China [3]University of Chinese Academy of Sciences, Beijing 100049, China
出 处:《Journal of Arid Land》2016年第3期375-388,共14页干旱区科学(英文版)
基 金:supported by the Innovation Research Group Program of Chinese Academy of Sciences and State Administration of Foreign Experts Affairs of China (KZCX2-YW-T09);the West Light Foundation of Chinese Academy of Sciences (2015-XBQN-B-20)
摘 要:The plant ecosystems are particularly sensitive to climate change in arid and semi-arid regions. However, the responses of vegetation dynamics to climate change in Central Asia are still unclear. In this study, we used the normalized difference vegetation index(NDVI) data to analyze the spatial-temporal changes of vegetation and the correlation of vegetation and climatic variables over the period of 1982–2012 in Central Asia by using the empirical orthogonal function and least square methods. The results showed that the annual NDVI in Central Asia experienced a weak increasing trend overall during the study period. Specifically, the annual NDVI showed a significant increasing trend between1982 and 1994, and exhibited a decreasing trend since 1994. The regions where the annual NDVI decreased were mainly distributed in western Central Asia, which may be caused by the decreased precipitation. The NDVI exhibited a larger increasing trend in spring than in the other three seasons. In mountainous areas, the NDVI had a significant increasing trend at the annual and seasonal scales; further, the largest increasing trend of NDVI mainly appeared in the middle mountain belt(1,700–2,650 m asl). The annual NDVI was positively correlated with annual precipitation in Central Asia, and there was a weak negative correlation between annual NDVI and temperature. Moreover, a one-month time lag was found in the response of NDVI to temperature from June to September in Central Asia during 1982–2012.The plant ecosystems are particularly sensitive to climate change in arid and semi-arid regions. However, the responses of vegetation dynamics to climate change in Central Asia are still unclear. In this study, we used the normalized difference vegetation index(NDVI) data to analyze the spatial-temporal changes of vegetation and the correlation of vegetation and climatic variables over the period of 1982–2012 in Central Asia by using the empirical orthogonal function and least square methods. The results showed that the annual NDVI in Central Asia experienced a weak increasing trend overall during the study period. Specifically, the annual NDVI showed a significant increasing trend between1982 and 1994, and exhibited a decreasing trend since 1994. The regions where the annual NDVI decreased were mainly distributed in western Central Asia, which may be caused by the decreased precipitation. The NDVI exhibited a larger increasing trend in spring than in the other three seasons. In mountainous areas, the NDVI had a significant increasing trend at the annual and seasonal scales; further, the largest increasing trend of NDVI mainly appeared in the middle mountain belt(1,700–2,650 m asl). The annual NDVI was positively correlated with annual precipitation in Central Asia, and there was a weak negative correlation between annual NDVI and temperature. Moreover, a one-month time lag was found in the response of NDVI to temperature from June to September in Central Asia during 1982–2012.
关 键 词:NDVI precipitation temperature vegetation dynamics Central Asian countries
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...