检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:赵庆生[1] 王宇[1] 郭贺宏 王振起 张学军[3]
机构地区:[1]太原理工大学电气与动力工程学院,太原030024 [2]国网晋中供电公司,山西晋中030600 [3]山西大学,太原030006
出 处:《电测与仪表》2016年第7期57-60,73,共5页Electrical Measurement & Instrumentation
基 金:山西省回国留学人员科研资助项目(2010-34);国网山西省电力公司科技项目资助(晋电发展[2014]88号)
摘 要:准确有效地检测出电力系统中各次谐波及间谐波,对于提高电能质量是至关重要的。传统的快速傅里叶变换由于频谱泄漏等原因,无法准确检测出系统中的非整次谐波。为解决这一问题,文章提出应用扩展Prony算法检测系统的非整次谐波。首先利用小波去除噪声,很好的克服Prony算法对噪声敏感这一弱点;然后通过线性预测得到模型的特征矩阵,运用奇异值分解法求解特征矩阵得到模型的特征多项式;最后运用最小二乘法求出特征多项式的根,得到非整次谐波各参数。针对信号频带宽窄可能影响算法精度这一问题,文章对不同带宽信号进行扩展Prony分析,验证算法精度。实验分析说明了该算法的可行性和有效性。It is especially important for improving power quality to identify all kinds of harmonics and inter-harmonics accurately and effectively in power system. Due to the spectrum leakage,the traditional Fast Fourier Transformation algorithm( FFT) cannot accurately detect the non-integral harmonics. To address this issue,the extended Prony algorithm is applied in this paper to identify the non-integral harmonics. Wavelet-de-noising method is firstly used to overcome the weakness that the Prony algorithm is noise-sensitive,and then,the eigen matrix of model is obtained by linear prediction and singular value decomposition is used to solve the eigen matrix to get characteristic polynomial of model. Finally,the least square method is used to find the root of the characteristic polynomial to get parameters of the non-integral harmonics. In view of the problem that the signal band width may affect the accuracy of the algorithm,the extended Prony algorithm is used to analyze different bandwidth signals to prove the accuracy of algorithm. Experimental analysis verifies the viability and effectiveness of the algorithm.
关 键 词:扩展Prony算法 小波去噪 非整次谐波检测 FFT 信号带宽
分 类 号:TM71[电气工程—电力系统及自动化]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.118