基于并行回火改进的GRBM的语音识别  被引量:1

Improved speech recognition of GRBM based on parallel tempering

在线阅读下载全文

作  者:赵彩光 张树群[1] 雷兆宜[1] 

机构地区:[1]暨南大学信息科学技术学院,广州510632

出  处:《计算机工程与应用》2016年第8期125-129,168,共6页Computer Engineering and Applications

摘  要:为提高连续语音识别中的识别准确率,采用高斯伯努利受限玻尔兹曼机进行语音训练和识别。通过结合并行回火算法的思想,采样、交换不同的温度链下的重构数据,实现在全局范围内对整个分布进行采样,提出一种基于并行回火改进的高斯伯努利受限玻尔兹曼机(GRBM-PT)的建模方法。该方法通过对语音信号的连续数据进行预训练分析、建模,最后使用支持向量机作为语音识别的分类器。在TI-Digits数字语音训练和数字测试数据库上的实验结果表明,语音识别率能够达到83.14%,基于GRBM-PT模型下的语音识别率明显优于RBM,RBM-PT以及GRBM模型的性能。To improve the performance of continuous data in speech recognition, the Gaussian-Bernoulli Restricted Boltzmann Machine(GRBM)is used to train and recognize the speech signal based on a developed recognition method.An improved GRBM network based on Parallel Tempering(GRBM-PT)is proposed by combining with the parallel tempering learning algorithm, which samples and swaps the reconstructed data in the different temperatures of entire distribution. Based on a scheme of pre-training and modeling the speech signal, the outputs are classified with a Support Vector Machine(SVM). The experimental results of digit speech recognition on the core test of TI-Digits show that the proposed scheme works very well, the accuracy can be as high as 83.14%. It is found that the GRBM-PT performs better than other methods, such as RBM, RBM-PT and GRBM.

关 键 词:高斯伯努利受限玻尔兹曼机(GRBM) 受限玻尔兹曼机 并行回火 语音识别 

分 类 号:TP391.4[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象