检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:汪慧兰[1] 杨晶晶[1] 毛晓辉[1] 石建平[1]
机构地区:[1]安徽师范大学物理与电子信息学院,安徽芜湖241000
出 处:《计算机工程与应用》2016年第8期191-195,共5页Computer Engineering and Applications
基 金:安徽高校省级科学研究项目(No.KJ2011Z135);中科院光电技术研究所微细加工光学技术国家重点实验室开放基金
摘 要:图像超分辨率重建技术是数字图像领域的一个研究热点,应用广泛。为了使重建的图像能更好地保持边缘细节,采用各向异性高斯核函数作为适用度函数,并将改进的自适应归一化卷积超分辨率重建算法应用于设计的多通道光学成像系统图像。由于各向异性高斯核函数邻域的尺度和方向由提出的自适应结构张量矩阵决定,其能很好地估计图像局部结构的方向和强度。实验仿真结果表明,提出的方法与其他方法相比可以保持边缘细节和提高信噪比,从而改善图像成像质量。The technique of image super-resolution reconstruction is a focus in the field of digital image, and applied to a wide range of fields. This paper presents an image reconstruction algorithm that combines the characteristics of multi-channel optical imaging system with improved adaptive normalized convolution super-resolution reconstruction algorithm. The experimental results show that, according to the anisotropic Gaussian kernel obtained by constructing the structure tensor matrix, compared with other methods, the super-resolution image reconstruction based on adaptive normalized convolution can greatly improve signal to noise ratio and improve image quality.
关 键 词:多通道成像系统 结构张量矩阵 归一化卷积 图像重建
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222