检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]中南大学资源与安全工程学院,长沙410083
出 处:《世界科技研究与发展》2016年第2期249-253,291,共6页World Sci-Tech R&D
基 金:国家自然科学基金(41272304)资助
摘 要:基于信息扩散原理,采用均方误差最小原则确定最优窗宽,提出了推断大样本岩土参数概率密度函数的正态信息扩散法。首先以计算机模拟发生的随机大样本为例,分别采用择近原则和均方误差最小原则确定的窗宽进行大样本正态信息扩散估计,分析了窗宽对信息扩散估计精度的影响,说明了该方法的合理性。以上海地区第2层褐黄色粉质粘土的抗剪强度参数实测值为例,推断了其概率密度函数,并通过K-S检验法与经典的概率分布函数的检验结果作对比,进一步验证了该方法的正确性和实用性,为大样本情况下的岩土参数概率分布推断提供了一条新途径。Based on the principle of information spread,normal information spread estimation method( NISEM) was proposed to conclude the probability density functions of large samples of geotechnical parameters. The optimum window-width was confirmed by the principle of minimum mean square error( MSE). To study the influence of window-width on the result of information diffusion estimation,computer-stimulated random samples were taken as examples. The window-width was confirmed by the principle of MSE and the principle of choosing the nearest respectively,and it showed that the method used in this paper was reasonable. Taking the shearing strength of brown yellow silty clay from layar 2 in Shanghai as examples,the probability density functions were deduced using this method. And by using K-S test,the result of NISEM was verified and proved to be more accurate and effective than the classical method. It can be concluded that the method in this paper is valid and available,which means that the presented method can be a new way to deduce the probability distribution of large samples of geotechnical parameters.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.219.92.7