检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:荣欣[1] 吴林雄[2] 胡鼎[1] 赵永[2] 惠兆斌[1] 周梅[2]
机构地区:[1]昆明铁路局疾病预防控制中心公共卫生与职业病科,云南昆明650011 [2]昆明医科大学公共卫生学院卫生事业管理与卫生经济系,云南昆明650500
出 处:《环境与职业医学》2016年第4期319-324,共6页Journal of Environmental and Occupational Medicine
基 金:昆明铁路局科技研究项目(编号:K14J30);昆明市科技计划(编号:2014-01-A-H-02-2032)
摘 要:[目的]了解机车司机噪声性听力损失现状,分析听力损失的影响因素。[方法]对某铁路局机务段2 045名机车司机(分布于开远、昆明和广通地区)进行问卷调查、耳科常规检查和纯音听阈测试,并对机车司机值乘过程中接触的噪声声压级进行现场检测,根据司机实际接触时间计算周40 h等效声级。运用卡方检验分析听力损失差异,多因素二分类非条件logistic回归分析听力损失的影响因素。[结果]本次研究对象2 045人,均为男性,年龄(39.85±6.79)岁,工龄(18.00±11.00)年(M±QI)。双耳高频平均听阈≥40 d B者267人,占13.1%。职业性噪声聋121人,检出率5.9%;以轻度、中度为主,分别占噪声聋人数的85.1%、9.9%。logistic回归分析结果发现,现岗位工龄(OR=1.025,95%CI:1.000~1.050)为发生噪声聋的危险因素;开远地区机车司机发生噪声聋的危险性高于昆明地区(OR=2.016,95%CI:1.194~3.406)和广通地区(OR=2.858,95%CI:1.476~5.533)。[结论]该铁路局机务段机车司机听力损失状况较差,其影响因素是工作地区、现岗位工龄。[Objective] To investigate the status of hearing loss of train drivers and analyze related influencing factors. [Methods] A total of 2 045 train drivers from a locomotive depot of a railway bureau(covering Kaiyuan, Kunming, and Guangtong areas) were asked to complete a self-administered questionnaire, otology routine examination, and pure tone audiometry. Sound pressure level in the workplace was measured to calculate the 40 h equivalent sound level(Leq40) based on actual working time every week. Chi-square test was used to analyze differences in hearing loss. Multivariate binary non-conditional logistic regression models were used to analyze related factors influencing hearing loss. [Results] All the study subjects were male(n=2 045), with an average age of(39.85±6.79) years and an average working age of(18.00±11.00) years(M±QI). The count of subjects with binaural high-frequency hearing threshold ≥40 d B was 267, accounting for 13.1% of the total. The positive rate of occupational noise-induced deafness was 5.9%(121 cases); most of the hearing injuries were minor(85.1%) or moderate(9.9%) level. The results of multivariate binary non-conditional logistic regression model indicated that working age(OR=1.025, 95%CI: 1.000-1.050) was a risk factor for noise-induced deafness; the risk for train drivers being noise-induced deafness in Kaiyuan was higher than that for drivers in Kunming(OR=2.016, 95%CI: 1.194-3.406) and Guangtong(OR=2.858, 95%CI: 1.476-5.533). [Conclusion] Serious hearing loss conditions of train drivers are identified in the study, which are influenced by working area and working age.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15