检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]江南大学物联网技术应用教育部工程研究中心,江苏无锡214122
出 处:《智能系统学报》2016年第2期172-179,共8页CAAI Transactions on Intelligent Systems
基 金:国家自然科学基金项目(61573167);高等学校博士学科点专项科研基金项目(20130093110011);江苏省自然科学基金项目(BK20141114)
摘 要:针对原始人工蜂群算法存在收敛速度慢和易陷入局部最优的不足,提出了一种基于信息反馈和改进适应度评价的人工蜂群算法。首先,引入种群个体分量记忆机制对个体信息进行反馈以增强种群开发能力,加快算法收敛速度;其次,为避免因种群后期无法识别优秀个体导致的"早熟"现象,通过改进适应度函数增大不同个体间解的差异性;最后,采用最优蜜源引导机制改进淘汰更新函数以避免不良个体的产生。对标准函数的测试结果表明,改进后算法有较快的收敛速度和较高的收敛精度。The artificial bee colony (ABC) algorithm converges slowly and easily gets stuck on local solutions; hence, an ABC algorithm based on information feedback and an improved fitness value evaluation is proposed. The algorithm first introduces a memory mechanism for individual components to feedback information to enhance its ca- pacity for population exploitation and to accelerate the convergence speed. Then, it adopts a new fitness function to increase the difference between individuals and to avoid premature convergence from failing to identify the best indi- vidual. Finally, the algorithm integrates an optimal nectar-source guidance mechanism into the knockout function to prevent the production of unexpected individuals. Experiments were conducted on standard functions and were compared with those with several typical improved ABCs. The results show that the improved algorithm accelerates the convergence rate and improves the solution accuracy.
关 键 词:人工蜂群算法 群体智能 进化算法 函数优化 信息反馈
分 类 号:TP18[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15