检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:鄢丹青
机构地区:[1]中国民航局第二研究所民航空管工程技术研究所工程技术室,四川成都610041
出 处:《兰州理工大学学报》2016年第2期153-157,共5页Journal of Lanzhou University of Technology
基 金:国家自然科学基金(61139003)
摘 要:经典的Kalman理论是以观测按时间延续分布的方式建立的.针对观测按空间延展分布的情形,基于时空对偶性建立空间Kalman滤波的方法,进而提出针对观测同时在时间、空间两个方面展开的情形的空-时Kalman滤波算法.这些算法可用于包括多传感器信息融合等在内的广泛领域.仿真表明,相比于在不计代价(成本)的情况下精度最高的集中式多传感器融合算法,空-时Kalman滤波不仅具有滤波精度与之相当的优点,更重要的是,由于在计算复杂度上占有更大的优势,使算法实时性和有效性更为提高,更适用对实时性有更高要求的情形.The classic Kalman theory is established in the form of time-continuously distributed observation.Aimed at the case of space-continuously distributed observation and based on spatial-temporal duality,spatial Kalman filtering method is established.Further,a spatial-temporal Kalman filtering is proposed,which is based on both the time and spatial observation.These algorithms can be used in widespread fields,including multi-sensor information fusion.The simulation shows that,compared with the most high-accuracy centralized multi-sensor fusion algorithm with no spare the space-time Kalman filtering will have not only a filtering accuracy comparable with the former but also have improved real-time ability and effectiveness of the algorithm due to its superiority in complexity of computation.Therefore,it will be suitable for the case,where the requirement of real-time ability is stricter.
关 键 词:空间Kalman滤波 空-时Kalman滤波 多传感器信息融合 计算复杂度
分 类 号:O231.1[理学—运筹学与控制论]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117