名老中医治疗风湿性心脏病用药规律的Logistic回归分析  被引量:4

Logistic Regression Analysis on Prescriptions Composition Principles of Famous Veteran Teran Doctors Treating Rheumatic Heart Disease by Traditional Chinese Medicine

在线阅读下载全文

作  者:徐亮[1] 陈守强[2] 侯建辉[1] 毕文霞[1] 

机构地区:[1]山东中医药大学,济南250014 [2]山东中医药大学第二附属医院

出  处:《中西医结合心脑血管病杂志》2016年第5期515-517,共3页Chinese Journal of Integrative Medicine on Cardio-Cerebrovascular Disease

摘  要:目的对名老中医治疗风湿性心脏病医案进行回归分析,挖掘其用药规律。方法将名老中医治疗心血管疾病的531例医案录入验案分析系统,对其中的125例风湿性心脏病建立频率统计表,导出SAS数据,利用SAS软件的Logistic功能,对频率>10%的35味中药进行回归分析。通过设定"通用指数"与"特异指数",对名老中医治疗风湿性心脏病用药进行综合分析。结果黄芪、丹参、茯苓、桂枝、附子用药频率最高;Logistic回归分析中,桂枝、附子、玉竹、沙参、车前子、生地、泽泻、茯苓、黄芪、丹参10味中药有统计学意义。结论结合用药"通用指数"与"特异指数",发现名老中医治疗风湿性心脏病时,在心血管病益气活血的治法基础上,可给予温阳散寒、养阴生津、利水渗湿等特异性治法。Objective To analyze the prescriptions composition principles of famous veteran teran doctors treating rheumatic heart disease by traditional Chinese medicine( TCM). Methods Input the 531 proven cases record of famous veteran teran doctors to the analysis software of proven cases,and export data to SAS software,then make the logistic regression analysis of the 35 kinds of drugs which frequency is more than 10%. Then excavating the rule of using Chinese medicine synthetically by analyzing the common index and specificity index. Results The frequency of astragalus membranaceus,salvia miltiorrhiza,poria cocos,cassia twig and monkshood were highest. In logistic regression analysis,10 kinds drugs are statistically significant,including cassia twig,monkshood,radix polygonati officinalis and so on. Conclusion Taking common index and specificity index into consideration,famous veteran teran doctors will use specific treatment on the basis of nourishing qi and activating circulation therapy,such as warm yang and dissipate cold,nourish yin and engender liquid and disinhibit water and percolate dampness therapy.

关 键 词:风湿性心脏病 名老中医经验 LOGISTIC回归分析 通用指数 特异指数 

分 类 号:R249[医药卫生—中医临床基础] R259[医药卫生—中医学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象