检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]湖州师范学院信息工程学院,浙江湖州313000 [2]浙江农林大学农业与食品科学学院浙江省农产品品质改良技术研究重点实验室,浙江临安311300 [3]浙江农林大学信息工程学院浙江省林业智能监测与信息技术研究重点实验室,浙江临安311300
出 处:《种子》2016年第4期34-40,共7页Seed
基 金:浙江省自然科学基金项目(编号:Y 14C130046)资助;国家公益性行业(农业)科研专项(编号:201303002)
摘 要:为研究高光谱图像技术用于水稻种子活力快速无损鉴别的可行性,本试验以不同老化程度的4个水稻品种共960粒水稻种子为材料,对样品进行人工老化后进行发芽试验,统计发芽率和根长,计算简易活力指数,据此将每个品种的样品划分为不同活力梯度组,采用高光谱图像技术,通过提取水稻种子的光谱反射率,结合Savitzky-Golay(SG)平滑算法、标准正态变量(SNV)和多元散射校正(MSC)对874~1 740nm波段内的光谱数据进行去除噪声处理,采用主成分分析法(PCA)、连续投影算法(SPA)进行特征波长选择,基于全波段光谱和基于特征波长分别建立了偏最小二乘判别分析(PLS-DA)模型。试验结果表明,经MSC预处理后,采用SPA挑选的特征波长建立的PLS-DA模型,建模集和预测集的识别正确率分别达到100%和98.75%。研究结果表明,利用高光谱图像技术对水稻种子活力进行快速无损检测是可行的。In order to identify common rice seed vigor on the market rapidly and nondestructively,four kinds rice seed vigor have been identified by combining hyperspectral imaging technology and different discriminant models.The reflectance spectral were extracted from the region of interest in the sample images for analysis,the wavelengths from 874 to 1 740 nm were preprocessed by Savitsky-Golay(SG),Standard Normal Variat(SNV)and Multiplicative Scatter Correction(MSC).Partial Least Square-Discriminant Analysis(PLS-DA)were used to build discriminant models based on the preprocessed full spectra and selected sensitive wavelength by Principal Component Analysis(PCA)and Successive Projections Algorithm(SPA)from the preprocessed spectra.Among the discriminant models using the preprocessed full spectra and selected sensitive wavelength,PLS-DA models obtained the highest classification accuracy.The selected sensitive wavelength by SPA from the MSC preprocessed spectra,PLS-DA models obtained the best classification accuracy with 100%accuracy in both the calibration set and the predicated set.The results showed that it was feasible to identify rice seed vigor rapidly and nondestructively by hyperspectral imaging technology.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.200