检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Takeshi Kawazoe
机构地区:[1]Department of Mathematics, Keio University at SFC, Endo, Fujisawa, Kanagawa,252-8520, Japan
出 处:《Analysis in Theory and Applications》2016年第1期38-51,共14页分析理论与应用(英文刊)
基 金:partly supported by Grant-in-Aid for Scientific Research (C) No.24540191, Japan Society for the Promotion of Science
摘 要:Abstract. Let (R+,*,A) be the Jacobi hypergroup. We introduce analogues of the Littlewood-Paley g function and the Lusin area function for the Jacobi hypergroup and consider their (H^1, L^1 ) boundedness. Although the g operator for (R+,*,A) possesses better property than the classical g operator, the Lusin area operator has an obstacle arisen from a second convolution. Hence, in order to obtain the (H^1,L^1) estimate for the Lusin area operator, a slight modification in its form is required.Abstract. Let (R+,*,A) be the Jacobi hypergroup. We introduce analogues of the Littlewood-Paley g function and the Lusin area function for the Jacobi hypergroup and consider their (H^1, L^1 ) boundedness. Although the g operator for (R+,*,A) possesses better property than the classical g operator, the Lusin area operator has an obstacle arisen from a second convolution. Hence, in order to obtain the (H^1,L^1) estimate for the Lusin area operator, a slight modification in its form is required.
关 键 词:Jacobi analysis Jacobi hypergroup g function area function real Hardy space.
分 类 号:O212[理学—概率论与数理统计]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.249