Field-dependent spin waves in high-aspect-ratio singlecrystal ferromagnetic nanowires  被引量:1

Field-dependent spin waves in high-aspect-ratio singlecrystal ferromagnetic nanowires

在线阅读下载全文

作  者:Semanti Pal Susmita Saha M. Venkata Kamalakar Anjan Barman 

机构地区:[1]Department of Condensed Matter Physics and Material Sciences, S. N. Bose National Centre for Basic Sciences, Block JD, Sector Ⅲ, Salt Lake, Kolkata 700 098, India [2]Department of Physics and Astronomy, Uppsala University, Box 516, 75120, Uppsala, Sweden

出  处:《Nano Research》2016年第5期1426-1433,共8页纳米研究(英文版)

摘  要:We investigate the spin wave (SW) modes in high-aspect-ratio single-crystal ferromagnetic nanowires (FMNWs) using an all-optical time-resolved magnetooptical Kerr effect (TR-MOKE) microscope. The precessional magnetization dynamics in such FMNWs unveil the presence of uniform and quantized SW modes that can be tuned by varying the bias magnetic field (H). The frequencies of the modes are observed to decrease systematically with a decreasing magnetic field, and the number of modes in the spectrum is reduced from four to three for H 〈 0.7 kOe. To understand these results, we perform micromagnetic simulations that reveal the presence of edge, standing wave, and uniform SW modes in the nanowires (NWs). Our simulations clearly show how the standing wave and uniform SW modes coalesce to form a single mode with uniform precession over the entire NW for H 〈 0.7 kOe, reproducing the experimentally observed reduction in modes. Our study elucidates the possibility of manipulating the SW modes in magnetic nanostructures, which is useful for applications in magnonic and spintronic devices.We investigate the spin wave (SW) modes in high-aspect-ratio single-crystal ferromagnetic nanowires (FMNWs) using an all-optical time-resolved magnetooptical Kerr effect (TR-MOKE) microscope. The precessional magnetization dynamics in such FMNWs unveil the presence of uniform and quantized SW modes that can be tuned by varying the bias magnetic field (H). The frequencies of the modes are observed to decrease systematically with a decreasing magnetic field, and the number of modes in the spectrum is reduced from four to three for H 〈 0.7 kOe. To understand these results, we perform micromagnetic simulations that reveal the presence of edge, standing wave, and uniform SW modes in the nanowires (NWs). Our simulations clearly show how the standing wave and uniform SW modes coalesce to form a single mode with uniform precession over the entire NW for H 〈 0.7 kOe, reproducing the experimentally observed reduction in modes. Our study elucidates the possibility of manipulating the SW modes in magnetic nanostructures, which is useful for applications in magnonic and spintronic devices.

分 类 号:O484.43[理学—固体物理] TB383[理学—物理]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象