检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Semanti Pal Susmita Saha M. Venkata Kamalakar Anjan Barman
机构地区:[1]Department of Condensed Matter Physics and Material Sciences, S. N. Bose National Centre for Basic Sciences, Block JD, Sector Ⅲ, Salt Lake, Kolkata 700 098, India [2]Department of Physics and Astronomy, Uppsala University, Box 516, 75120, Uppsala, Sweden
出 处:《Nano Research》2016年第5期1426-1433,共8页纳米研究(英文版)
摘 要:We investigate the spin wave (SW) modes in high-aspect-ratio single-crystal ferromagnetic nanowires (FMNWs) using an all-optical time-resolved magnetooptical Kerr effect (TR-MOKE) microscope. The precessional magnetization dynamics in such FMNWs unveil the presence of uniform and quantized SW modes that can be tuned by varying the bias magnetic field (H). The frequencies of the modes are observed to decrease systematically with a decreasing magnetic field, and the number of modes in the spectrum is reduced from four to three for H 〈 0.7 kOe. To understand these results, we perform micromagnetic simulations that reveal the presence of edge, standing wave, and uniform SW modes in the nanowires (NWs). Our simulations clearly show how the standing wave and uniform SW modes coalesce to form a single mode with uniform precession over the entire NW for H 〈 0.7 kOe, reproducing the experimentally observed reduction in modes. Our study elucidates the possibility of manipulating the SW modes in magnetic nanostructures, which is useful for applications in magnonic and spintronic devices.We investigate the spin wave (SW) modes in high-aspect-ratio single-crystal ferromagnetic nanowires (FMNWs) using an all-optical time-resolved magnetooptical Kerr effect (TR-MOKE) microscope. The precessional magnetization dynamics in such FMNWs unveil the presence of uniform and quantized SW modes that can be tuned by varying the bias magnetic field (H). The frequencies of the modes are observed to decrease systematically with a decreasing magnetic field, and the number of modes in the spectrum is reduced from four to three for H 〈 0.7 kOe. To understand these results, we perform micromagnetic simulations that reveal the presence of edge, standing wave, and uniform SW modes in the nanowires (NWs). Our simulations clearly show how the standing wave and uniform SW modes coalesce to form a single mode with uniform precession over the entire NW for H 〈 0.7 kOe, reproducing the experimentally observed reduction in modes. Our study elucidates the possibility of manipulating the SW modes in magnetic nanostructures, which is useful for applications in magnonic and spintronic devices.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.43