火焰自由基成像和极限学习机在NOx排放预测中的研究  被引量:5

Research on Flame Radical Imaging and Extreme Learning Machine to Prediction of NOx Emissions

在线阅读下载全文

作  者:李新利[1] 李楠[1] 孙愉佳 卢钢[2] 闫勇[1,2] 刘石[1] 

机构地区:[1]华北电力大学控制与计算机工程学院,北京102206 [2]英国肯特大学工程与数字艺术学院

出  处:《系统仿真学报》2016年第5期1179-1185,共7页Journal of System Simulation

基  金:国家重点基础研究发展计划项目(2012CB 215203);111引智项目(B12034);中央高校基本科研业务费专项资金项目(13MS21)

摘  要:火焰自由基对深入了解燃烧机理起着重要作用。通过数字成像研究火焰自由基光谱特征,并利用该特征参数建立极限学习机(ELM,Extreme Learning Machine)模型,以试验数据与数字仿真相结合的方法实现在生物质燃烧中对NOx的排放在线预测。用电子倍增CCD(EMCCD)相机采集火焰中的四种自由基OH*,CN*,CH*和C_2*的数字图像,采用模糊C均值聚类法(FCM,Fuzzy C-Means)进行图像分割并提取特征值,结合燃烧火焰温度,利用极限学习机进行NOx排放预测建模。采用燃气燃烧试验炉上的试验数据验证了预测模型的有效性。Flame radicals are crucial for an in-depth understanding of the combustion mechanisms. The spectral characteristics of flame radicals were studied based on digital imaging and feature extraction techniques. The information obtained was used to establish the extreme learning machine(ELM) model which can be used to predict the NOx emissions based on the experimental data and digital simulation from a biomass-gas-air combustion process. The digital images of four flame radicals, i.e., OH*, CN*, CH* and C2*, were collected using an EMCCD(Electron Multiplying Charge Coupled Device) camera. The image segmentation was performed using the fuzzy C-means(FCM) algorithm, and image features were extracted. Finally, the ELM model was built for the prediction of NOx emissions based on the radical features and flame temperture. The experimental data on a gas-biomass combustion test rig demonstrate the validity of the proposed ELM model.

关 键 词:火焰自由基 数字图像处理 极限学习机 NOX排放 预测 

分 类 号:TP183[自动化与计算机技术—控制理论与控制工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象