检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]湖南大学电气与信息工程学院 [2]中国人民解放军95039部队
出 处:《计算机工程与应用》2016年第9期154-158,189,共6页Computer Engineering and Applications
基 金:国家自然科学基金(No.61271382)
摘 要:针对复杂背景下采用单一特征进行行人检测时的局限性,提出了一种融合多种特征并运用模板弹性模型与局部二次加权的算法,将梯度直方图(HOG)、肤色、发色与曲率有效融合,建立了适用行人检测的各特征模型。第一级采用改进HOG特征结合模板弹性模型利用SVM分类器初次检测;第二级提取局部模板感兴趣区域(ROI)进行头部肤色、发色与腿部曲率检测。实验表明,该算法弥补了单一特征的不足,有效检测了行人整体与局部关键特征,提高了识别性能。Aiming at the limitations of pedestrian detection using single feature under complex background, this paper proposes an algorithm which fuses several features by using the elastic models and part quadrat-ic weighting. Fusing Histogram of Oriented Gradient(HOG), skin color, hair color and curvature efficiently, it est-ablishes kinds of feature models which can be adaptive to pedestrian detection. The first level which adopts the improved HOG feature and is combined with elastic models uses the SVM classifier for the first det-ection. The second level extracts the Region Of Interest(ROI)of partial models to detect head skin color, hair color and curvature of the legs. The experimental result shows that the algorithm makes up for the inade-quacy of single feature. Meanwhile, the algorithm detects the whole and part key features of pedestrian effe-ctively and it improves the recognition performance.
关 键 词:方向梯度直方图 肤色 发色 曲率 弹性模型 局部二次加权
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.223.162.48