检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]北京空间飞行器总体设计部空间热控技术北京市重点实验室,北京100094
出 处:《航天返回与遥感》2016年第2期1-8,共8页Spacecraft Recovery & Remote Sensing
摘 要:航天器精密控温技术是目前航天器热控制的重要组成部分,航天器、尤其是光学遥感卫星对精密热控的需求极为迫切。文章通过简明扼要的机理分析,获取了影响航天器控温性能的主要因素:热控设计、控温周期、可分辨的加热时间、加热控制方式、测温精度、控温算法。在此基础上,着重调研和综述了国际上航天器控温算法选用及控温系统设计方法的研究现状,并进行了对比分析,从控温系统设计方法、控温算法、控温策略及控温系统性能验证方面指出了中国在该领域存在的不足,对中国航天器精密控温技术的发展提出如下建议:积极开展PI控制在航天器精密控温上的应用、基于被控对象热特性的控温系统设计方法及体现高精度控温策略的精确热分析技术等研究。Precise temperature control technology for spacecraft is one of the important parts of spacecraft thermal control. Precision thermal control is extremely required for spacecraft, especially optical remote sensing satellite. Thermal design, temperature control cycle, minimum heating time, heating control mode, temperature measurement precision and temperature control algorithm are the key factors which affect the performance of spacecraft temperature control system. They are obtained according to theoretical analysis. On this basis, temperature control algorithm and the design method of temperature control system in home and abroad are reviewed in this paper. Some shortages are pointed out in temperature control system design method, temperature control algorithm, temperature control strategy and temperature control system performance verification in China. The suggestion on spacecraft precision temperature control technology is put forward. Some technologies are needed to be further studied, including application of PI algorithm, design method based on object's thermal properties and accurate thermal analysis.
关 键 词:航天器 遥感卫星 精密温度控制 控温算法 控温系统设计方法
分 类 号:TK124[动力工程及工程热物理—工程热物理]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.145