检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:ZHANG Jian-lin CAO Jie SU Xing
机构地区:[1]College of Information Science and Technology,Donghua University,Shanghai 201620,China [2]Department of Applied Mathematics,Zhongyuan University of Technology,Zhengzhou 450007,China
出 处:《Chinese Quarterly Journal of Mathematics》2016年第1期27-38,共12页数学季刊(英文版)
基 金:Supported by the National Natural Science Foundation of China(11271066);Supported by the Shanghai Education Commission(13ZZ048)
摘 要:In this paper, we investigate non-isothermal one-dimensional model of capillary compressible fluids as derived by M Slemrod(1984) and J E Dunn and J Serrin(1985). We establish the existence, uniqueness and exponential stability of global solutions in H^2×H^1× H^1 for the one-dimensional Navier-Stokes-Korteweg equations by a priori estimates,which implies the existence and exponential stability of the nonlinear C_0-semigroups S(t) on H^2× H^1× H^1.In this paper, we investigate non-isothermal one-dimensional model of capillary compressible fluids as derived by M Slemrod(1984) and J E Dunn and J Serrin(1985). We establish the existence, uniqueness and exponential stability of global solutions in H^2×H^1× H^1 for the one-dimensional Navier-Stokes-Korteweg equations by a priori estimates,which implies the existence and exponential stability of the nonlinear C_0-semigroups S(t) on H^2× H^1× H^1.
关 键 词:Navier-Stokes equations CAPILLARITY Korteweg stress tensor
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.33