A Remark on Global Existence,Uniqueness and Exponential Stability of Solutions for the 1D Navier-Stokes-Korteweg Equations  被引量:1

A Remark on Global Existence, Uniqueness and Exponential Stability of Solutions for the 1D Navier-Stokes-Korteweg Equations

在线阅读下载全文

作  者:ZHANG Jian-lin CAO Jie SU Xing 

机构地区:[1]College of Information Science and Technology,Donghua University,Shanghai 201620,China [2]Department of Applied Mathematics,Zhongyuan University of Technology,Zhengzhou 450007,China

出  处:《Chinese Quarterly Journal of Mathematics》2016年第1期27-38,共12页数学季刊(英文版)

基  金:Supported by the National Natural Science Foundation of China(11271066);Supported by the Shanghai Education Commission(13ZZ048)

摘  要:In this paper, we investigate non-isothermal one-dimensional model of capillary compressible fluids as derived by M Slemrod(1984) and J E Dunn and J Serrin(1985). We establish the existence, uniqueness and exponential stability of global solutions in H^2×H^1× H^1 for the one-dimensional Navier-Stokes-Korteweg equations by a priori estimates,which implies the existence and exponential stability of the nonlinear C_0-semigroups S(t) on H^2× H^1× H^1.In this paper, we investigate non-isothermal one-dimensional model of capillary compressible fluids as derived by M Slemrod(1984) and J E Dunn and J Serrin(1985). We establish the existence, uniqueness and exponential stability of global solutions in H^2×H^1× H^1 for the one-dimensional Navier-Stokes-Korteweg equations by a priori estimates,which implies the existence and exponential stability of the nonlinear C_0-semigroups S(t) on H^2× H^1× H^1.

关 键 词:Navier-Stokes equations CAPILLARITY Korteweg stress tensor 

分 类 号:O175.29[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象