Modeling and simulation of a time-varying inertia aircraft in aerial refueling  被引量:5

Modeling and simulation of a time-varying inertia aircraft in aerial refueling

在线阅读下载全文

作  者:Wang Haitao Dong Xinmin Xue Jianping Liu Jiaolong Wang Jian 

机构地区:[1]Aeronautics and Astronautics Engineering College, Air Force Engineering University

出  处:《Chinese Journal of Aeronautics》2016年第2期335-345,共11页中国航空学报(英文版)

基  金:supported by the National Natural Science Foundation of China(Nos.61473307;61304120)

摘  要:Studied in this paper is dynamic modeling and simulation application of the receiver aircraft with the time-varying mass and inertia property in an integrated simulation environment which includes two other significant factors, i.e., a hose-drogue assembly dynamic model with the variable-length property and the wind effect due to the tanker's trailing vortices. By extending equations of motion of a fixed weight aircraft derived by Lewis et al., a new set of equations of motion for a receiver in aerial refueling is derived. The equations include the time-varying mass and inertia property due to fuel transfer and the fuel consumption by engines, and the fuel tanks have a rectangle shape rather than a mass point. They are derived in terms of the translational and rotational position and velocity of the receiver with respect to an inertial reference frame. A linear quadratic regulator (LQR) controller is designed based on a group of linearized equations under the initial receiver mass condition. The equations of motion of the receiver with a LQR con- troller are implemented in the integrated simulation environment for autonomous approaching and station-keeping of the receiver in simulations.Studied in this paper is dynamic modeling and simulation application of the receiver aircraft with the time-varying mass and inertia property in an integrated simulation environment which includes two other significant factors, i.e., a hose-drogue assembly dynamic model with the variable-length property and the wind effect due to the tanker's trailing vortices. By extending equations of motion of a fixed weight aircraft derived by Lewis et al., a new set of equations of motion for a receiver in aerial refueling is derived. The equations include the time-varying mass and inertia property due to fuel transfer and the fuel consumption by engines, and the fuel tanks have a rectangle shape rather than a mass point. They are derived in terms of the translational and rotational position and velocity of the receiver with respect to an inertial reference frame. A linear quadratic regulator (LQR) controller is designed based on a group of linearized equations under the initial receiver mass condition. The equations of motion of the receiver with a LQR con- troller are implemented in the integrated simulation environment for autonomous approaching and station-keeping of the receiver in simulations.

关 键 词:Aerial refueling Equations of motion:Hose-rogue assembly Time-varying inertia Whipping phenomenon 

分 类 号:V211[航空宇航科学与技术—航空宇航推进理论与工程] V228.17

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象