Quasi-static tensile behavior of large-diameter thin-walled Ti–6Al–4V tubes at elevated temperature  被引量:7

Quasi-static tensile behavior of large-diameter thin-walled Ti–6Al–4V tubes at elevated temperature

在线阅读下载全文

作  者:Tao Zhijun Yang He Li Heng Fan Xiaoguang 

机构地区:[1]State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, China

出  处:《Chinese Journal of Aeronautics》2016年第2期542-553,共12页中国航空学报(英文版)

基  金:support of the National Natural Science Foundation of China(No.51275415 and No.50905144);the program for New Century Excellent Talents in University;the Natural Science Basic Research Plan in Shaanxi Province(No.2011JQ6004)of China;the fund of the State Key Laboratory of Solidification Processing in NWPU of China;the 111 Project(No.B08040)of China

摘  要:As promising light-weight and high-performance structure components, large-diameter thin-walled (LDTW) Ti 6Al^4V titanium alloy (TC4) bent tubes are needed most urgently in many industries such as aviation and aerospace. Warm bending may be a feasible way for manufacturing these components. Understanding their temperature and strain rate dependent tensile behavior is the foundation for formability improvement and warm bending design. In this paper, uniaxial ten- sile tests were conducted at elevated temperatures ranging from 298 K to 873 K at tensile velocities of 2, 10, 15 mm/min. The main results show that the tensile behavior of LDTW TC4 tubes is dif- ferent from that of TC4 sheets. The typical elongation of TC4 tubes at room temperature is 10% lower than that of TC4 sheets. The flow stress of TC4 tubes decreases greatly by about 50% with the temperature rising to 873 K. At temperatures of 573-673 K, the hardening exponent is at its highest value, which means the deformation mechanism changes from twining to more dislocation movement by slipping. The fracture elongation of TC4 tubes fluctuates with increasing temperature, which is associated with changes in the deformation mechanism and with the blue brittleness. The fractography of TC4 tubes at various temperatures, especially at 673 K, shows that second phases and impurities significantly influence fracture elongation. By considering the characteristics of the tensile behavior and by properly choosing the die material, the warm bending for TC4 tubes can be achieved at temperatures of 723-823 K.As promising light-weight and high-performance structure components, large-diameter thin-walled (LDTW) Ti 6Al^4V titanium alloy (TC4) bent tubes are needed most urgently in many industries such as aviation and aerospace. Warm bending may be a feasible way for manufacturing these components. Understanding their temperature and strain rate dependent tensile behavior is the foundation for formability improvement and warm bending design. In this paper, uniaxial ten- sile tests were conducted at elevated temperatures ranging from 298 K to 873 K at tensile velocities of 2, 10, 15 mm/min. The main results show that the tensile behavior of LDTW TC4 tubes is dif- ferent from that of TC4 sheets. The typical elongation of TC4 tubes at room temperature is 10% lower than that of TC4 sheets. The flow stress of TC4 tubes decreases greatly by about 50% with the temperature rising to 873 K. At temperatures of 573-673 K, the hardening exponent is at its highest value, which means the deformation mechanism changes from twining to more dislocation movement by slipping. The fracture elongation of TC4 tubes fluctuates with increasing temperature, which is associated with changes in the deformation mechanism and with the blue brittleness. The fractography of TC4 tubes at various temperatures, especially at 673 K, shows that second phases and impurities significantly influence fracture elongation. By considering the characteristics of the tensile behavior and by properly choosing the die material, the warm bending for TC4 tubes can be achieved at temperatures of 723-823 K.

关 键 词:FRACTOGRAPHY LDTW TC4 tube Strain rate Tensile behavior Warm bending 

分 类 号:TG115[金属学及工艺—物理冶金] TG146.23[金属学及工艺—金属学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象