基于宽带突发单载波频域均衡传输的时域精细信道估计方法  被引量:4

Time-domain Fine Channel Estimation Based on Broadband Burst Single-carrier Frequency Domain Equalization Transmission

在线阅读下载全文

作  者:吴钊[1] 张彧[1,2] 姜龙[1] 宋健 

机构地区:[1]清华大学电子工程系,北京100084 [2]清华大学信息科学与技术国家实验室,北京100084 [3]数字电视国家工程实验室(北京),北京100091 [4]深圳市数字电视系统重点实验室,深圳518000

出  处:《电子与信息学报》2016年第5期1166-1172,共7页Journal of Electronics & Information Technology

基  金:国家973科技项目(2012CB316000);国家重大专项(2015ZX03002008);国家电网项目([2015]404-41)~~

摘  要:单载波频域均衡(SC-FDE)是宽带无线通信系统中一种具有竞争力的解决方案,获得了广泛的关注和研究。SC-FDE方案不仅抗多径能力出色、复杂度低,且具有比正交频分复用(OFDM)信号更低的峰均比值。在突发SCFDE系统中,接收机需要利用训练序列快速获取信道的特征信息,以避免解调性能损失。传统的基于训练序列的信道估计方法并不适合宽带猝发SC-FDE系统,难以兼顾估计准确性和复杂度。该文提出一种基于时域训练序列的精细信道估计方法。该方法利用时域PN序列得到信道参数的最大似然估计值,并利用信道稀疏的特征,根据信道噪声强度对信道估计值进行噪声抑制处理。仿真表明:与传统信道估计方法相比,该信道估计方法能取得更高的估计精度,且具有较低的实现复杂度。Single Carrier-Frequency Domain Equalization(SC-FDE) is a competitive alternative for broadband wireless communication systems, which has attracted wide attention and extensive research. As an effective technical solution to cope with multipath effects, SC-FDE shows low complexity and has low signal peak to average power ratio compared with OFDM signals. In burst SC-FDE systems, channel information is required at the receivers to avoid the performance loss of demodulations. Traditional channel estimation methods based on training sequences are not very suitable for broadband burst SC-FDE system. In this paper, a fine channel estimation method based on the time-domain training sequence is proposed. Channel parameters are obtained with the aid of time domain PN sequence based on maximum likelihood criteria. Besides, the noise suppression process is performed for channel estimation values on account of the channel noise strength. Simulation results demonstrate that the proposed channel estimation method can significantly reduce the Bit Error Rate(BER) of signal reception while maintaining low realization complexity.

关 键 词:无线通信 单载波频域均衡 突发传输 信道估计 训练序列 

分 类 号:TN92[电子电信—通信与信息系统]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象