基于迷宫算法和遗传算法的船舶管路路径规划  被引量:5

Ship pipe route planning method based on maze algorithm and genetic algorithm

在线阅读下载全文

作  者:隋海腾 牛文铁[1] 

机构地区:[1]天津大学机构理论与装备设计教育部重点实验室,天津300072

出  处:《工程设计学报》2016年第2期188-194,共7页Chinese Journal of Engineering Design

基  金:国家自然科学基金资助项目(51275340)

摘  要:船舶管路的多样性和布局环境中约束的复杂性导致管路设计效率低下.为辅助设计人员提高管路设计效率并减少人为错误,提出了一种新的管路设计方法.首先,基于轴平行包围盒简化管路布局空间,利用栅格法对其进行离散化,并赋予空间网格特定的能量值,构建管路布局优化问题的数学模型.其次,基于遗传算法的框架,引入改进迷宫算法,提出管路路径规划方法,其中:迷宫搜索中引入辅助点的概念,增加了遗传算法中初始种群的多样性,有利于提高遗传算法的全局搜索能力;提出了定长度的编码方法,简化了管路染色体处理难度,提高了算法性能;基于引入方向优先搜索策略的迷宫算法,设计定长度编码遗传算子,保证了子代个体的质量,提高算法的收敛速度.最后,基于仿真试验,验证算法的性能.试验结果表明了该方法的可行性和高效率,以及其对实际管路布局工作具有指导意义.The diversity of piping systems and complexity of constrains in layout space lead to the low efficiency of ship pipe design. A new pipe route planning method was proposed to improve the design efficiency and reduce human errors. Based on the simplified layout space, the mathematical model was firstly built by the discretization of the layout space and the specific energy value which was given to the spatial network. Based on the constructed mathematical model, the improved maze algorithm and genetic algorithm were then combined together to conduct pipe route planning. The concept of auxiliary point was introduced to improve the maze searching perform- ance, which guaranteed the diversity of initial population and enhanced the global search ability of genetic algorithm. A fixed-length coding method was also proposed to simplify the difficulty in handling the pipe chromosomes and improve the performance of algorithm. The direction oriented strategy was applied in maze retracing process to design the genetic operators with fixed-length chromosomes, which not only guaranteed the quality of children chromosomes but also improved the convergence speed of the algorithm. The simulation results verify the feasibility and effectiveness of this approach, and prove the guiding significance of the approach to actual ship pipe route planning.

关 键 词:管路布局 迷宫算法 遗传算法 定长度编码 

分 类 号:U662.9[交通运输工程—船舶及航道工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象