检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]沈阳理工大学装备工程学院,沈阳110159 [2]中国科学院沈阳自动化研究所,沈阳110016
出 处:《航空动力学报》2016年第4期993-999,共7页Journal of Aerospace Power
基 金:国家自然科学基金(51205052);辽宁省教育厅科学研究项目(L2015469);沈阳理工大学重点实验室开放基金(4771004kfs26)
摘 要:针对齿轮振动可靠性分析时计算量大、计算精度低等问题,提出一种基于降维可视化技术和Kriging模型的可靠性分析方法.通过Monte Carlo法生成抽样点,采用降维可视化技术将多维空间降至二维极特征空间,通过Kriging模型预测失效域与安全域的分界线,在预测分界线时,借助Kriging非线性预测和误差分析的特性,通过一种主动学习选点的方式建立Kriging预测模型,来提高样本点的利用率.通过齿轮振动可靠性的算例表明:相比于传统的降维可视化技术,调用极限状态函数由975次减少为149次,计算时间由12 400s减小为1 810s,可靠度与100000次Monte Carlo模拟计算结果基本吻合一致,验证了该算法的正确性和有效性.To solve the problems of large computation and low precision during gear vi- bration reliability analysis, a reliability analysis method based on dimensionality reduction vi- sualization and Kriging was proposed. Sample points were generated by Monte Carlo meth- od. These points were transformed into two-dimensional pole feature space, and then Krig- ing model was used to predict the dividing line of safe and failure regions. When predicting the dividing line, an active learning approach of selecting points was introduced to establish Kriging model so that the utilization rate of sample points was improved dramatically, thanks to the properties of nonlinear prediction and error estimation of Kriging. Through gear vibra- tion reliability analysis, and by comparing with traditional dimensionality reduction visualiza- tion technique, it is shown that the number of calls to the performance function changes from 975 numbers to 149 numbers, and calculation time changes from 12 400 s to 1810 s. What's more, the result of this method is consistent with that of 100000 Monte Carlo simulation, so the efficiency and correctness is validated.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.52