检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:曾华琳[1] 周昌乐[1] 陈毅东[1] 史晓东[1]
机构地区:[1]厦门大学信息科学与技术学院,福建省仿脑智能系统重点实验室,福建厦门361005
出 处:《厦门大学学报(自然科学版)》2016年第3期406-412,共7页Journal of Xiamen University:Natural Science
基 金:国家自然科学基金(61573294);国家科技支撑计划(2012BAH14F03);教育部博士学科点基金博导类项目(20130121110040)
摘 要:汉语隐喻计算是中文信息处理中的棘手难题之一.已有的隐喻识别研究多以人工方式分析和抽取隐喻特征,存在着主观性强、难以扩充的缺点,并且对于专业背景知识要求比较严格.本文基于大规模语料库的机器学习,利用最大熵分类模型,提出了一种最优特征模板自动抽取的隐喻识别算法,讨论了3种不同层次的特征模板,既包含了经典的简单特征,又将跨多个词的远距离上下文信息,以及描述语义信息的词语相似性引入特征模板进行考察.实验结果表明,该算法提高了隐喻识别准确率,是一种对于汉语隐喻计算行之有效的机器学习方法.Chinese metaphor computation is one of difficult problems in the Chinese information processing.It is very subjective and difficult for existing research methods by manually analyzing and extraction of metaphor feature.For the purpose of analyzing the traditional rule-based methods,a new machine learning method based on large scale corpus is proposed for metaphor recognition.The proposed method uses the maximum entropy model, and three different feature patterns, which are common features, large-scale con- text information, and the similarity of candidate words, to describe semantic information. Experimental results show that the proposed method can improve the accuracy of the metaphor recognition, and also indicate the effectiveness of the proposed machine learning method for metaphor computation.
分 类 号:TP391.1[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28