检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:段在鹏[1,2] 钱新明[1] 夏登友[1,3] 多英全[4]
机构地区:[1]北京理工大学爆炸科学与技术国家重点实验室,北京100081 [2]福州大学环境与资源学院,福建福州350116 [3]中国人民武装警察部队学院消防指挥系,河北廊坊065000 [4]中国安全生产科学研究院,北京100012
出 处:《东北大学学报(自然科学版)》2016年第5期756-760,共5页Journal of Northeastern University(Natural Science)
基 金:"十二五"国家科技支撑计划项目(2012BAK13B01)
摘 要:运用多项数据分析及推理技术提高物资需求预测速度及可靠性.首先利用历史案例信息求救援案例指标权重;之后建立模糊聚类(FCM)及案例检索相结合的算法,案例检索采用CBR-GRA双重检索技术,在得到相似度向量与灰色关联度向量之后,再次应用灰色关联分析求取案例相似-关联度向量,从而保证可靠案例检索;最后建立救援物质需求模型.经实例验证可知:案例聚类实现数据初步筛选,提升了检索速度,2种检索方法融合,提升了检索可靠性.Multi-data analysis and reasoning techniques were adopted to improve the forecasting speed and reliability of emergency resources demand. Firstly, based on the historical case information, the rescue case index weights were calculated. Then an algorithm combining fuzzy C-means clustering with case retrieval was established to increase the efficiency of case retrieval, which was performed by CBR (casebased reason) similarity and GRA (grey relational analysis) correlation. After the CBR similarity vector and GRA correlation vector were obtained, the grey relational analysis was used to calculate the similarity-correlation vector so as to ensure that similar cases are retrieved efficiently. Finally, a resources demand model was built up. The results confirmed that case clustering to achieve preliminary data filtering can enhance retrieval speed and combining two retrieval methods can improve the reliability of retrieval.
关 键 词:应急救援 需求预测 案例推理 灰色关联分析 模糊C均值聚类 主客观综合权重
分 类 号:X928[环境科学与工程—安全科学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.173