基于矩阵填充的二维自适应波束形成算法  

2D adaptive beamforming algorithm based on matrix completion

在线阅读下载全文

作  者:曾文浩[1] 朱晓华[1] 李洪涛[1] 陈诚[1] 马义耕 

机构地区:[1]南京理工大学电子工程与光电技术学院,南京210094

出  处:《航空学报》2016年第5期1573-1579,共7页Acta Aeronautica et Astronautica Sinica

基  金:国家自然科学基金(61401204)~~

摘  要:针对基于矩阵填充的二维自适应波束形成问题,提出一种基于奇异值门限(SVT)的特征分解线性约束最小方差(SVT-ELCMV)算法。首先建立二维自适应波束形成矩阵填充模型,其次验证接收信号矩阵满足零空间性质(NSP),并分析最小可恢复阵元数,最后以SVT算法将稀疏阵列信号恢复为完整信号,并通过修正的特征分解线性约束最小方差(LCMV)形成有效波束。算法解决了稀疏阵列平均副瓣大幅度上升的缺陷,且在平面阵列部分阵元无法正常工作时依然有效。计算机仿真表明:SVT-ELCMV算法可使稀疏阵列具有与完整阵列相同的二维波束形成能力,并可有效抑制干扰信号,验证了算法的有效性和优越性。The two-dimensional(2D)adaptive beamforming based on matrix completion is considered,and a singular value threshold(SVT)based-eigenvalues decomposition linearly constrained minimum variance(SVT-ELCMV)algorithm is proposed.Firstly,a signal model of two-dimensional adaptive beamforming is established based on the matrix completion.And then,the received signal is proved to satisfy the null space property(NSP).Furthermore,the minimum number of array elements to recover the sparse matrices has been analyzed.Finally,the sparse signal is recovered to full signal by SVT algorithm and an effective beam is formed based on the modified LCMV algorithm.This algorithm overcomes the problem that the average sidelobes increases significantly in sparse array,and it keeps valid in the situation when some elements of the sparse array do not work.Computer simulation shows that the SVT-ELCMV algorithm makes the sparse array have the same beamforming capability with the full array.Moreover,the proposed algorithm can restrain the interference signals effectively,so the superiority of the algorithm is verified.

关 键 词:阵列信号处理 稀疏平面阵列 自适应波束形成 矩阵填充 SVT-ELCMV 

分 类 号:V243.2[航空宇航科学与技术—飞行器设计] TN911.72[电子电信—通信与信息系统]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象