基于加速遗传算法的方钢管混凝土柱优化模型  被引量:4

The Optimization Model of Concrete-filled Square Steel Tubular Columns Based on Accelerating Genetic Algorithm

在线阅读下载全文

作  者:袁朝阳[1] 吴成国[1] 张宇亮[1] 钟磊[1] 杨齐祺[1] 

机构地区:[1]合肥工业大学土木与水利工程学院,安徽合肥230009

出  处:《华北水利水电大学学报(自然科学版)》2016年第2期57-61,共5页Journal of North China University of Water Resources and Electric Power:Natural Science Edition

基  金:国家自然科学基金项目(51309072;51309004)

摘  要:方钢管混凝土柱因其优良的性能被越来越多地应用到高层建筑结构设计中,其经济性也日益受到关注。设计合理的构件尺寸将会节省投资成本、降低工程造价,因此合理地优化方钢管混凝土柱构件则显得非常重要。根据钢管混凝土结构设计最新规范建立方钢管混凝土柱优化模型,并采用罚函数法处理复杂约束问题,提出用加速遗传算法求解该优化模型,并以某高层结构底层柱为例进行了应用验证。结果表明:经加速遗传算法优化后的单根柱造价比原设计造价节省了24.5%,效益可观;用加速遗传算法对方钢管混凝土柱进行优化设计是可行的,具有较高的经济效益和推广应用价值。Concrete-filled square steel tubular columns were applied in the design of high-rise building structure increasingly because of the good performance,and their economy was also paid more and more attention. It will save the investment cost and reduce the cost of projects if the components are designed reasonably. Therefore,the reasonable optimization of the components is very important. In this paper,the optimization model of concrete-filled square steel tubular columns was established based on the latest design standard of concrete-filled steel tubular structure,the penalty functions were utilized to deal with the complex constraint problems,it was put forward that the optimization model could be solved with accelerating genetic algorithm program,the application research was done according to the bottom columns of a high-rise building. Results show that the cost of a single column optimized with accelerating genetic algorithm method will be reduced 24. 5% compared to the original design,the benefit is considerable; so it is feasible to optimize and design the concrete-filled square steel tubular columns with accelerating genetic algorithm,which also has high economic efficiency and popularization value.

关 键 词:方钢管混凝土柱 设计优化 加速遗传算法 

分 类 号:TV335[水利工程—水工结构工程] TU318[建筑科学—结构工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象