Microstructural evolution and castability prediction in newly designed modern third-generation nickel-based superalloys  被引量:1

Microstructural evolution and castability prediction in newly designed modern third-generation nickel-based superalloys

在线阅读下载全文

作  者:Homam Naffakh-Moosavy 

机构地区:[1]Department of Materials Engineering, Faculty of Engineering, Tarbiat Modares University, Tehran 14115-143, Iran

出  处:《International Journal of Minerals,Metallurgy and Materials》2016年第5期548-562,共15页矿物冶金与材料学报(英文版)

摘  要:The present research aims to establish a quantitative relation between microstructure and chemical composition (i.e., Ti, Al, and Nb) of newly designed nickel-based superalloys. This research attempts to identify an optimum microstructure at which the minimum quanti- fies of γ/γ' and γ/γ" compounds are achieved and the best castability is predicted. The results demonstrate that the highest quantity of inter- metallic eutectics (i.e., 41.5wt%) is formed at 9.8wt% (Ti + A1). A significant quantity of intermetallics formed in superalloy 1 (with a com- position of7 - 9.8wt% (Ti + A1)), which can deteriorate its castability. The type and morphology of the eutectics changed and the amount considerably decreased with decreasing Ti + A1 content in superalloy 2 (with a composition ofy - 7.6wt% (Ti + A1), 1.Swt% Nb). Thus, it is predicted that the castability would improve for superalloy 2. The same trend was observed for superalloy 4 (with a composition of 7 - 3.7wt% (Ti + A1), 4.4wt% Nb). This means that the amount of Laves increases with increasing Nb (to 4.4wt%) and decreasing Ti + A1 (to 3.7wt%) in su- peralloy 4. The best castability was predicted for superalloy 3 (with a composition ofy - 5.7wt% (Ti + A1), 2.8wt% Nb).The present research aims to establish a quantitative relation between microstructure and chemical composition (i.e., Ti, Al, and Nb) of newly designed nickel-based superalloys. This research attempts to identify an optimum microstructure at which the minimum quanti- fies of γ/γ' and γ/γ" compounds are achieved and the best castability is predicted. The results demonstrate that the highest quantity of inter- metallic eutectics (i.e., 41.5wt%) is formed at 9.8wt% (Ti + A1). A significant quantity of intermetallics formed in superalloy 1 (with a com- position of7 - 9.8wt% (Ti + A1)), which can deteriorate its castability. The type and morphology of the eutectics changed and the amount considerably decreased with decreasing Ti + A1 content in superalloy 2 (with a composition ofy - 7.6wt% (Ti + A1), 1.Swt% Nb). Thus, it is predicted that the castability would improve for superalloy 2. The same trend was observed for superalloy 4 (with a composition of 7 - 3.7wt% (Ti + A1), 4.4wt% Nb). This means that the amount of Laves increases with increasing Nb (to 4.4wt%) and decreasing Ti + A1 (to 3.7wt%) in su- peralloy 4. The best castability was predicted for superalloy 3 (with a composition ofy - 5.7wt% (Ti + A1), 2.8wt% Nb).

关 键 词:nickel-based superalloys INTERMETALLICS CASTABILITY microstructural evolution chemical composition 

分 类 号:TG132.3[一般工业技术—材料科学与工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象