出 处:《Rare Metals》2016年第2期162-171,共10页稀有金属(英文版)
基 金:financially supported by the National Natural Science Foundation of China(Nos.51275415 and50905144);the Natural Science Basic Research Plan in Shanxi Province(No.2011JQ6004);the Program of the Ministry of Education of China for Introducing Talents of Discipline to Universities(No.B08040)
摘 要:Warm rotary draw bending provides a feasible method to form the large-diameter thin-walled(LDTW)TC4 bent tubes, which are widely used in the pneumatic system of aircrafts. An accurate prediction of flow behavior of TC4 tubes considering the couple effects of temperature,strain rate and strain is critical for understanding the deformation behavior of metals and optimizing the processing parameters in warm rotary draw bending of TC4 tubes. In this study, isothermal compression tests of TC4 tube alloy were performed from 573 to 873 K with an interval of 100 K and strain rates of 0.001, 0.010 and0.100 s^(-1). The prediction of flow behavior was done using two constitutive models, namely modified Arrhenius model and artificial neural network(ANN) model. The predictions of these constitutive models were compared using statistical measures like correlation coefficient(R), average absolute relative error(AARE) and its variation with the deformation parameters(temperature, strain rate and strain). Analysis of statistical measures reveals that the two models show high predicted accuracy in terms of R and AARE. Comparatively speaking, the ANN model presents higher predicted accuracy than the modified Arrhenius model. In addition, the predicted accuracy of ANN model presents high stability at the whole deformation parameter ranges, whereas the predictability of the modified Arrhenius model has some fluctuation at different deformation conditions. It presents higher predicted accuracy at temperatures of 573-773 K, strain rates of 0.010-0.100 s^(-1)and strain of 0.04-0.32, while low accuracy at temperature of 873 K, strain rates of 0.001 s^(-1)and strain of 0.36-0.48.Thus, the application of modified Arrhenius model is limited by its relatively low predicted accuracy at some deformation conditions, while the ANN model presents very high predicted accuracy at all deformation conditions,which can be used to study the compression behavior of TC4 tube at the temperature range of 573-873 K and the stWarm rotary draw bending provides a feasible method to form the large-diameter thin-walled(LDTW)TC4 bent tubes, which are widely used in the pneumatic system of aircrafts. An accurate prediction of flow behavior of TC4 tubes considering the couple effects of temperature,strain rate and strain is critical for understanding the deformation behavior of metals and optimizing the processing parameters in warm rotary draw bending of TC4 tubes. In this study, isothermal compression tests of TC4 tube alloy were performed from 573 to 873 K with an interval of 100 K and strain rates of 0.001, 0.010 and0.100 s^(-1). The prediction of flow behavior was done using two constitutive models, namely modified Arrhenius model and artificial neural network(ANN) model. The predictions of these constitutive models were compared using statistical measures like correlation coefficient(R), average absolute relative error(AARE) and its variation with the deformation parameters(temperature, strain rate and strain). Analysis of statistical measures reveals that the two models show high predicted accuracy in terms of R and AARE. Comparatively speaking, the ANN model presents higher predicted accuracy than the modified Arrhenius model. In addition, the predicted accuracy of ANN model presents high stability at the whole deformation parameter ranges, whereas the predictability of the modified Arrhenius model has some fluctuation at different deformation conditions. It presents higher predicted accuracy at temperatures of 573-773 K, strain rates of 0.010-0.100 s^(-1)and strain of 0.04-0.32, while low accuracy at temperature of 873 K, strain rates of 0.001 s^(-1)and strain of 0.36-0.48.Thus, the application of modified Arrhenius model is limited by its relatively low predicted accuracy at some deformation conditions, while the ANN model presents very high predicted accuracy at all deformation conditions,which can be used to study the compression behavior of TC4 tube at the temperature range of 573-873 K and the st
关 键 词:TC4 tube Compression behavior Constitutive model Modified Arrhenius model Neural network model
分 类 号:TG146.23[一般工业技术—材料科学与工程] TP183[金属学及工艺—金属材料]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...