机构地区:[1]College of Mechanical and Vehicle Engineering, Hunan University [2]School of Engineering, University of Connecticut
出 处:《Chinese Journal of Mechanical Engineering》2016年第3期571-578,共8页中国机械工程学报(英文版)
基 金:Supported by National Natural Science Foundation of China(Grant Nos.51505140,51375156);China Postdoctoral Science Foundation(Grant No.2015M570676);Hunan Provincial Natural Science Foundation of China
摘 要:The error motions of micro mechanical systems, such as micro-spindles, increase with the increasing of the rotational speed, which not only decreases the rotational accuracy, but also promotes instability and limits the maximum operational speed. One effective way to deal with it is to use micro-flexible couplings between the drive and driven shafts so as to reduce error motions of the driven shaft. But the conventional couplings, such as diaphragm couplings, elastomeric couplings, bellows couplings, and grooved couplings, etc, cannot be directly used because of their large and complicated structures. This study presents a novel micro-coupling that consists of a flexible coupling and a shape memory alloy(SMA)-based clamp for micro mechanical systems. It is monolithic and can be directly machined from a shaft. The study performs design optimization and provides manufacturing considerations, including thermo-mechanical training of the SMA ring for the desired Two-Way-Shape-Memory effect(TWSMe). A prototype micro-coupling and a prototype micro-spindle using the proposed coupling are fabricated and tested. The testing results show that the prototype micro-coupling can bear a torque of above 5 N · mm and an axial force of 8.5 N and be fitted with an SMA ring for clamping action at room temperature(15 ℃) and unclamping action below –5 ℃. At the same time, the prototype micro-coupling can work at a rotational speed of above 200 kr/min with the application to a high-speed precision micro-spindle. Moreover, the radial runout error of the artifact, as a substitute for the micro-tool, is less than 3 μm while that of turbine shaft is above 7 μm. It can be concluded that the micro-coupling successfully accommodates misalignment errors of the prototype micro-spindle. This research proposes a micro-coupling which is featured with an SMA ring, and it is designed to clamp two shafts, and has smooth transmission, simple assembly, compact structure, zero-maintenance and balanced motions.The error motions of micro mechanical systems, such as micro-spindles, increase with the increasing of the rotational speed, which not only decreases the rotational accuracy, but also promotes instability and limits the maximum operational speed. One effective way to deal with it is to use micro-flexible couplings between the drive and driven shafts so as to reduce error motions of the driven shaft. But the conventional couplings, such as diaphragm couplings, elastomeric couplings, bellows couplings, and grooved couplings, etc, cannot be directly used because of their large and complicated structures. This study presents a novel micro-coupling that consists of a flexible coupling and a shape memory alloy(SMA)-based clamp for micro mechanical systems. It is monolithic and can be directly machined from a shaft. The study performs design optimization and provides manufacturing considerations, including thermo-mechanical training of the SMA ring for the desired Two-Way-Shape-Memory effect(TWSMe). A prototype micro-coupling and a prototype micro-spindle using the proposed coupling are fabricated and tested. The testing results show that the prototype micro-coupling can bear a torque of above 5 N · mm and an axial force of 8.5 N and be fitted with an SMA ring for clamping action at room temperature(15 ℃) and unclamping action below –5 ℃. At the same time, the prototype micro-coupling can work at a rotational speed of above 200 kr/min with the application to a high-speed precision micro-spindle. Moreover, the radial runout error of the artifact, as a substitute for the micro-tool, is less than 3 μm while that of turbine shaft is above 7 μm. It can be concluded that the micro-coupling successfully accommodates misalignment errors of the prototype micro-spindle. This research proposes a micro-coupling which is featured with an SMA ring, and it is designed to clamp two shafts, and has smooth transmission, simple assembly, compact structure, zero-maintenance and balanced motions.
关 键 词:coupling clamp shape memory alloy thermo-mechanical training micro-spindle
分 类 号:TH113.2[机械工程—机械设计及理论] TG139.6[一般工业技术—材料科学与工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...