A Second Note on a Result of Haddad and Helou  

A Second Note on a Result of Haddad and Helou

在线阅读下载全文

作  者:Yujie WANG 

机构地区:[1]School of Mathematics and Computer Science, Anhui Normal University

出  处:《Journal of Mathematical Research with Applications》2016年第3期272-274,共3页数学研究及应用(英文版)

基  金:Supported by the National Natural Science Foundation of China(Grant No.11471017)

摘  要:Let K be a finite field of characteristic ≠ 2 and G the additive group of K × K. Let k_1, k_2 be integers not divisible by the characteristic p of K with(k_1, k_2) = 1. In 2004, Haddad and Helou constructed an additive basis B of G for which the number of representations of g ∈ G as a sum b_1+ b_2(b_1, b_2 ∈ B) is bounded by 18. For g ∈ G and B■G, let σk_1,k_2(B, g)be the number of solutions of g = k_1b_1 + k_2b_2, where b_1, b_2 ∈ B. In this paper, we show that there exists a set B ? G such that k_1 B + k2 B = G and σk_1,k_2(B, g)≤16.Let K be a finite field of characteristic ≠ 2 and G the additive group of K × K. Let k_1, k_2 be integers not divisible by the characteristic p of K with(k_1, k_2) = 1. In 2004, Haddad and Helou constructed an additive basis B of G for which the number of representations of g ∈ G as a sum b_1+ b_2(b_1, b_2 ∈ B) is bounded by 18. For g ∈ G and B■G, let σk_1,k_2(B, g)be the number of solutions of g = k_1b_1 + k_2b_2, where b_1, b_2 ∈ B. In this paper, we show that there exists a set B ? G such that k_1 B + k2 B = G and σk_1,k_2(B, g)≤16.

关 键 词:integers additive conjecture subset subgroup proof multiplicative discriminant analogue instance 

分 类 号:O152[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象