检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Yujie WANG
机构地区:[1]School of Mathematics and Computer Science, Anhui Normal University
出 处:《Journal of Mathematical Research with Applications》2016年第3期272-274,共3页数学研究及应用(英文版)
基 金:Supported by the National Natural Science Foundation of China(Grant No.11471017)
摘 要:Let K be a finite field of characteristic ≠ 2 and G the additive group of K × K. Let k_1, k_2 be integers not divisible by the characteristic p of K with(k_1, k_2) = 1. In 2004, Haddad and Helou constructed an additive basis B of G for which the number of representations of g ∈ G as a sum b_1+ b_2(b_1, b_2 ∈ B) is bounded by 18. For g ∈ G and B■G, let σk_1,k_2(B, g)be the number of solutions of g = k_1b_1 + k_2b_2, where b_1, b_2 ∈ B. In this paper, we show that there exists a set B ? G such that k_1 B + k2 B = G and σk_1,k_2(B, g)≤16.Let K be a finite field of characteristic ≠ 2 and G the additive group of K × K. Let k_1, k_2 be integers not divisible by the characteristic p of K with(k_1, k_2) = 1. In 2004, Haddad and Helou constructed an additive basis B of G for which the number of representations of g ∈ G as a sum b_1+ b_2(b_1, b_2 ∈ B) is bounded by 18. For g ∈ G and B■G, let σk_1,k_2(B, g)be the number of solutions of g = k_1b_1 + k_2b_2, where b_1, b_2 ∈ B. In this paper, we show that there exists a set B ? G such that k_1 B + k2 B = G and σk_1,k_2(B, g)≤16.
关 键 词:integers additive conjecture subset subgroup proof multiplicative discriminant analogue instance
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117