Expression levels of GSTA2 and APOD genes might be associated with carotenoid coloration in golden pheasant(Chrysolophus pictus) plumage  被引量:4

Expression levels of GSTA2 and APOD genes might be associated with carotenoid coloration in golden pheasant(Chrysolophus pictus) plumage

在线阅读下载全文

作  者:Guang-Qi GAO Li-Shuang SONG Bin TONG Guang-Peng LI 

机构地区:[1]Research Center for Laboratory of Animal Science, Inner Mongolia University

出  处:《Zoological Research》2016年第3期144-150,共7页动物学研究(英文)

基  金:supported by the 2014 Fundamental Research Program from Science and Technology of the Inner Mongolia Autonomous Region of China

摘  要:Carotenoids, which generate yellow, orange, and red colors, are crucial pigments in avian plumage. Investigations into genes associated with carotenoid- based coloration in avian species are important; however, such research is difficult because carotenoids cannot be synthetized in vertebrates as they are only derived from dietary sources. Here, the golden pheasant (Chrysolophus pictus) was used as a model in analysis of candidate gene expression profiles implicated in carotenoid binding and deposition. Using mass and Raman spectrometry to confirm the presence of carotenoids in golden pheasant feathers, we found C40H540 and C40H5602 in feathers with yellow to red colors, and in the rachis of iridescent feathers. The global gene expression profiles in golden pheasant skins were analyzed by RNA-seq and all six carotenoid binding candidate genes sequenced were studied by real- time PCR. STAR4, GSTA2, Scarbl, and APOD in feather follicles showed different expressions in red breast and orange nape feathers compared with that of iridescent mantle feathers. Further comparison of golden pheasant yellow rump and Lady Amherst's pheasant (Chrysolophus amherstiae) white nape feathers suggested that GSTA2 and APOD played a potential role in carotenoid-based coloration in golden pheasant.Carotenoids, which generate yellow, orange, and red colors, are crucial pigments in avian plumage. Investigations into genes associated with carotenoid- based coloration in avian species are important; however, such research is difficult because carotenoids cannot be synthetized in vertebrates as they are only derived from dietary sources. Here, the golden pheasant (Chrysolophus pictus) was used as a model in analysis of candidate gene expression profiles implicated in carotenoid binding and deposition. Using mass and Raman spectrometry to confirm the presence of carotenoids in golden pheasant feathers, we found C40H540 and C40H5602 in feathers with yellow to red colors, and in the rachis of iridescent feathers. The global gene expression profiles in golden pheasant skins were analyzed by RNA-seq and all six carotenoid binding candidate genes sequenced were studied by real- time PCR. STAR4, GSTA2, Scarbl, and APOD in feather follicles showed different expressions in red breast and orange nape feathers compared with that of iridescent mantle feathers. Further comparison of golden pheasant yellow rump and Lady Amherst's pheasant (Chrysolophus amherstiae) white nape feathers suggested that GSTA2 and APOD played a potential role in carotenoid-based coloration in golden pheasant.

关 键 词:Expression Carotenoid coloration Candidate genes Golden pheasant FEATHER 

分 类 号:Q953[生物学—动物学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象