In situ combined chemical and biological assessment of estrogenic pollution in a water recycling system  被引量:1

In situ combined chemical and biological assessment of estrogenic pollution in a water recycling system

在线阅读下载全文

作  者:Yulang Chi Qiansheng Huang Huanteng Zhang Yajie Chen Sijun Dong 

机构地区:[1]Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences

出  处:《Journal of Environmental Sciences》2016年第5期216-223,共8页环境科学学报(英文版)

基  金:support by National Natural Science Foundation of China (Nos. 41390240, 21477123);the Project for the Development of Ocean Economy in Fujian Province (No. 2014Y0046);the Key Laboratory of Urban Environment and Health, Chinese Academy of Sciences (IUEMS201405, KLUEH-S-201303)

摘  要:Estrogenic pollution and its control in aquatic systems have drawn substantial attention around the world. The chemical and biological assessment approaches currently utilized in the laboratory or field cannot give an integrated assessment of the pollution when used separately. In this study, in situ chemical and biological methods were combined to detect pollution in a water recycling system. Data for the water quality index(WQI) demonstrated that the water treatment resulted in the decline of pollution from upstream to downstream.Wild male Nile tilapia, Oreochromis niloticus, was sampled in June and September. The concentrations of four common endocrine disrupting chemicals(EDCs) were determined in the tilapia liver by chromatographic analysis methods. The level of 17β-estradiol(E2) declined from upstream to downstream in both months. In contrast, the levels of bisphenol A(BPA),di-(2-ethylhcxyl) phthalate(DEHP), and perfluorooctane sulfonate(PFOS) did not display this declining tendency. The highest relative expression of vitellogenin 1(VTG1) was observed in tilapia from upstream, then the level significantly decreased along the water system. The relative expression levels of CYP1A1 in the water system were also significantly higher than that of the control. However, no declining trend could be observed along the water system. The change of VTG1 expression corresponded well with that of E2 levels in the tilapia liver. Overall,our study assessed the pollution by endocrine disruptors using chemical and biological data with good correspondence. This study also demonstrated the effectiveness of the water recycling system in eliminating estrogen pollution in municipal sewage.Estrogenic pollution and its control in aquatic systems have drawn substantial attention around the world. The chemical and biological assessment approaches currently utilized in the laboratory or field cannot give an integrated assessment of the pollution when used separately. In this study, in situ chemical and biological methods were combined to detect pollution in a water recycling system. Data for the water quality index(WQI) demonstrated that the water treatment resulted in the decline of pollution from upstream to downstream.Wild male Nile tilapia, Oreochromis niloticus, was sampled in June and September. The concentrations of four common endocrine disrupting chemicals(EDCs) were determined in the tilapia liver by chromatographic analysis methods. The level of 17β-estradiol(E2) declined from upstream to downstream in both months. In contrast, the levels of bisphenol A(BPA),di-(2-ethylhcxyl) phthalate(DEHP), and perfluorooctane sulfonate(PFOS) did not display this declining tendency. The highest relative expression of vitellogenin 1(VTG1) was observed in tilapia from upstream, then the level significantly decreased along the water system. The relative expression levels of CYP1A1 in the water system were also significantly higher than that of the control. However, no declining trend could be observed along the water system. The change of VTG1 expression corresponded well with that of E2 levels in the tilapia liver. Overall,our study assessed the pollution by endocrine disruptors using chemical and biological data with good correspondence. This study also demonstrated the effectiveness of the water recycling system in eliminating estrogen pollution in municipal sewage.

关 键 词:In situ sampling Vitellogenin 1 17β-Estradiol Endocrinedisrupting chemicals Oreochromis niloticus Water recycling system 

分 类 号:X824[环境科学与工程—环境工程] X832

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象