Impact of solvents and surfactants on the self-assembly of nanostructured amine functionalized silica spheres for CO_(2) capture  被引量:1

在线阅读下载全文

作  者:Edith Berger Maximilian W.Hahn Thomas Przybilla Benjamin Winter Erdmann Spiecker Andreas Jentys Johannes A.Lercher 

机构地区:[1]Department of Chemistry and Catalysis Research Center,Technische Universitat Munchen Lichtenbergstraβe 4,85747 Garching,Germany [2]Center for Nanoanalysis and Electron Microscopy(CENEM)&Institute of Micro-and Nanostructure Research,Friedrich-Alexander-Universitat Erlangen-Nurnberg,Cauerstraβe 6,91058 Erlangen,Germany

出  处:《Journal of Energy Chemistry》2016年第2期325-333,共9页能源化学(英文版)

基  金:supported by the German Research Council(DFG)within the priority program(Schwerpunktprogramm),“Poröse Medien mit definierter Porenstruktur in der Verfahrenstechnik–Modellierung,Anwendngen,Synthese”(SPP 1570)under the projects LE 1187/10 and SP 648/4;the framework of the DFG Excellence Initiative the Cluster of Excellence“Engineering of Advanced Materials”(DFG EXC 415);funding via the DFG research training group GRK 1896

摘  要:Macroscopic SiO2 spheres with a homogeneous amine distribution were synthesized by a one-step emulsion based synthesis approach in a flow column reactor. The CO2 adsorption capacity of the nanostructured amine-functionalized silica spheres was studied in absence and presence of H2O. The structural properties were adjusted by varying solvents and surfactants during the synthesis and, at constant amine loadings, were found to be the main factor for influencing the CO2 sorption capacities. Under water-free conditions CO2 is bound to the amino groups via the formation of carbamates, which require two neighboring amino groups to adsorb one CO2 molecule. At constant amine concentrations sorbents with lower surface area allow to establish a higher amine density on the surface, which enhances the CO2 uptake capacities under dry conditions. In presence of H2O the CO2 adsorption changes to 1:1 stoichiometry due to stabilization of carbamates by protonation of H2O and formation of further species such as bicarbonates, which should in principle double the adsorption capacities. Low concentrations of physisorbed H2O(0.3 mmol/g) did not impair the adsorption capacity of the adsorbents for CO2, while at higher water uptakes(0.6 and 1.1 mmol/g) the CO2 uptake is reduced, which could be attributed to capillary condensation of H2O or formation of bulky reaction products blocking inner pores and access to active sites.Macroscopic SiO2 spheres with a homogeneous amine distribution were synthesized by a one-step emulsion based synthesis approach in a flow column reactor. The CO2 adsorption capacity of the nanostructured amine-functionalized silica spheres was studied in absence and presence of H2O. The structural properties were adjusted by varying solvents and surfactants during the synthesis and, at constant amine loadings, were found to be the main factor for influencing the CO2 sorption capacities. Under water-free conditions CO2 is bound to the amino groups via the formation of carbamates, which require two neighboring amino groups to adsorb one CO2 molecule. At constant amine concentrations sorbents with lower surface area allow to establish a higher amine density on the surface, which enhances the CO2 uptake capacities under dry conditions. In presence of H2O the CO2 adsorption changes to 1:1 stoichiometry due to stabilization of carbamates by protonation of H2O and formation of further species such as bicarbonates, which should in principle double the adsorption capacities. Low concentrations of physisorbed H2O(0.3 mmol/g) did not impair the adsorption capacity of the adsorbents for CO2, while at higher water uptakes(0.6 and 1.1 mmol/g) the CO2 uptake is reduced, which could be attributed to capillary condensation of H2O or formation of bulky reaction products blocking inner pores and access to active sites.

关 键 词:Carbon dioxide AMINES Green solvent Surfactant Water(H2O) CARBAMATE BICARBONATE 

分 类 号:TQ424[化学工程] TB383.1[一般工业技术—材料科学与工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象