码复用差分混沌键控性能分析与同步算法  被引量:9

Performance analysis and synchronization algorithm for CS-DCSK system

在线阅读下载全文

作  者:张琳[1] 徐位凯[1] 王琳[1] 蔡国发[1] 胡伟[1] 

机构地区:[1]厦门大学信息科学与技术学院,厦门361005

出  处:《重庆邮电大学学报(自然科学版)》2016年第3期330-336,共7页Journal of Chongqing University of Posts and Telecommunications(Natural Science Edition)

基  金:国家自然科学基金(61001073)~~

摘  要:码复用差分混沌键控(code-shifted differential chaos shift keying,CS-DCSK)是一种具有优良抗多径衰落能力的非相干混沌调制技术,虽然非相干混沌调制技术不需要在接收端恢复混沌载波,但准确的符号同步是保证系统性能的前提。介绍了CS-DCSK系统的结构模型,包括发射机和接收机原理以及CS-DCSK独特的信号帧结构,然后采用高斯近似法(Gaussian approximation,GA)分析了高斯信道和Nakagami-m衰落信道下符号同步误差对CS-DCSK误码性能的影响,最后提出一种符号同步算法,该算法通过发送训练序列首先完成帧间的粗同步,在粗同步的基础上完成帧内的细同步。仿真结果表明,在高斯信道和Nakagami-m衰落信道下,仿真结果与理论分析基本一致。通过与理想同步情况下的误码率性能比较,提出的同步算法存在2 d B左右的性能损失。Code-shifted differential chaos shift keying (CS-DCSK) is anon-coherent chaotic demodulation has lowcomplexity and good performance of anti-multi path fading channels. It does not require recover chaos carrier at re-ceiver , but the accurate symbol synchronization is the prerequisite to guarantee the performance firstly introduces the structure of CS-DCSK system including transmitter, receiver and the unique signal frames of CS-DC- SK. Then it investigates BER performance of CS-DCSK with synchronization error in AWGN and Nakagami-m channel re-spectively using gaussian approximation (GA ) method. Atlast , an efficient synchronization algorithm is proposed for CS- DCSK. In the algorithm , firstly we use training symbols to complete inter-frame coarse timing , then to finish fine timing on the basis of the coarse timing. Simulation results show that the simulation and the theoretical analent with both AWGN and Nakagami-m channels. Compared with the perfect synchronization,the BER performance of theproposed synchronization algorithm has about 2dB performance loss.

关 键 词:码复用差分混沌键控(CS-DCSK) 非相干接收机 符号同步 高斯近似法 误码率 

分 类 号:TN929.5[电子电信—通信与信息系统]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象