基于Benders分解算法的跨区互联电力系统协调规划模型  被引量:5

Multi-area Power System Coordinated Planning Model Based on Benders Decomposition Algorithm

在线阅读下载全文

作  者:薛松[1] 曾博[2] 王跃锦[3] 

机构地区:[1]国网能源研究院,北京102209 [2]华北电力大学新能源电力系统国家重点实验室,北京102206 [3]冀北电力有限公司北京送变电公司,北京102401

出  处:《中国管理科学》2016年第5期119-126,共8页Chinese Journal of Management Science

基  金:国家自然科学基金资助项目(71271082);国家电网公司科技项目(SGZB0000JYWT1400237);国家软科学研究计划(2012GXS4B064)

摘  要:研究跨区互联电力系统的协调规划,对于提高投资效率实现更大范围的资源配置具有较强现实意义。本文首先描述多区域电力系统扩张规划问题,并建立多区域扩张规划模型,旨在寻求最优的扩容方案,以最小投入来满足多区域电力系统负荷增长需求;其次,采用Benders分解算法将多区域扩张规划问题分解为一个规划主问题和一个运行子问题,通过主子问题之间的迭代求解,获得最终的最优解;最后,对某个典型的包含7个区域的多区域电力系统进行模拟仿真,验证了本文所构建模型及算法的有效性。With the accelerating of grid interconnection pace and inter-regional power transmission needs becoming increasingly prominent, the generation side planning and transmission side plan faces more uncertainties. Coordination requirements between those are also high. Therefore, in background of multi-regional power system interconnection, it has important theoretical and practical significance to study the generation and transmission coordinated expansion planning problem. Firstly, multi-area power system co-ordinated planning problem is described, and the multi-area coordinated planning model is established, which is aimed at finding the optimal expansion program. The model meets the multi-area power system growth load demand with the minimum investment. Secondly, the Benders decomposition algorithm is used to decompose the multi-area expansion planning problem into a planning master problem and a running sub-problem. Through iterative solution between the master problem and the sub-problem, the final optimal solution ca be obtained. Finally, a typical multi-area power system which consists of seven regions is simulated, to verify the effectiveness of theconstructed model and algorithm.

关 键 词:多区域 电力系统互联 发输电扩张规划 Benders分解算法 

分 类 号:C871[社会学—统计学] F224

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象