西安城区地下水位监测网优化设计  被引量:1

Optimized Design of the Monitoring Network of Groundwater Level in Xi'an City

在线阅读下载全文

作  者:闫峭[1,2] 于林弘 宋扬[2] 周维博[2] 

机构地区:[1]长安大学理学院,西安710064 [2]长安大学环境科学与工程学院,西安710064 [3]山东省第三地质矿产勘察院,山东烟台264000

出  处:《灌溉排水学报》2016年第5期103-107,112,共6页Journal of Irrigation and Drainage

基  金:陕西省自然科学基金项目(2014JM1030);陕西省水利科技计划项目(2014slkj-19);中国地质调查局地质调查项目(12120113004800);中央高校基本科研业务费(310812161011)

摘  要:进行地下水位监测可获得评价区域地下水时、空分布的必要信息。采取地下水动态类型编图的方法对西安城区地下水位监测网进行了优化设计,将整个西安城区分成71个动态类型区,使用ArcGIS生成地下水动态类型分区图;根据现有资料,对比3种半变差函数模型,确定了适宜西安城区的Kriging插值模型,进而取得西安城区地下水位监测网优化前、后的估计误差标准差等值线图。结果显示,标准差由0.46-2.98m变为0.25-1.02m,优化后的研究区整体标准差范围明显减小。最终确定在西安城区布设97眼监测井,其中在原有61眼监测井中保留44眼,新增监测井53眼。优化后的监测网能够更准确地获取有效的监测数据。Monitoring of regional groundwater levels can obtain important information for quantitative evaluating the time-space distribution of groundwater.The optimization design of groundwater level monitoring wells were set up mainly based on the groundwater dynamic type method.Xi'an city was divided into71 dynamic zones.The zoning map of groundwater dynamic type was generated by the aid of ArcGIS;Through comparing the three kinds of common semivariogram models,ordinary Kriging interpolation model for Xi'an city was built.The contour line of the standard deviation of the estimation error was obtainedbefore and after optimization.The results showed that the standard deviation of the estimation error of the monitoring water level changed from 0.46-2.98(before optimization)to 0.25-1.02(after optimization).The overall standard deviation of the estimation error significantly decreased.Finally,97 monitoring wells needed to be located in Xi'an city,including 44 original monitoring wells and 53 newly monitoring wells.Through the optimized monitoring network,the effective monitoring data can be obtained more accurately.

关 键 词:地下水位监测网 地下水动态类型 Kriging插值法 半变差函数 估计误差标准差 

分 类 号:P641.7[天文地球—地质矿产勘探]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象