机构地区:[1]Key Laboratory of Mineralogy and Metallogeny, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences,Guangzhou 510640, China [2]Center for Electron Microscopy, Wuhan University,Wuhan 430072, China [3]School of Geosciences and Info-Physics, Central South University, Changsha 410083, Hunan, China [4]Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou 510640, China
出 处:《Acta Geochimica》2016年第2期105-110,共6页地球化学学报(英文)
基 金:financially supported by National Natural Science foundation of China under Grant 41172046 and 40972044 in part
摘 要:The mineralogy of shock vein matrix in the Suizhou meteorite has been investigated by optical and transmission electron microscopy. It was revealed that the vein matrix is composed of majorite-pyrope garnet, mag- aesiowtistite, and ringwoodite, with FeNi-FeS inter- growths. The observation and character of ring-like selected electron diffraction (SAED) patterns indicate that Lhe idiomorphic garnet crystals in the vein matrix have different orientations. The polycrystalline nature of magnesiowtistite is also confirmed by a ring-like SAED pattern. Both garnet and magnesiowtistite crystals showed sharp Jiffraction spots, signifying the good crystallinity of these :wo minerals. The SAED pattern of cryptocrystalline 5ngwoodite shows only diffuse concentric diffraction tings. FeNi metal and troilite (FeS), which were molten during the shock event, occur in the matrix as fine eutectic FeNi-FeS intergrowths filling the interstices between garaet and magnesiowiistite grains. Based on the phase dia- gram of the Allende chondrite and the results of this TEM study, it is inferred that majorite-pyrope garnet first crystallized from the Suizhou chondritic melt at 22-26 GPa, Followed by crystallization of magnesiowtistite at 20-24 GPa, and then ringwoodite at 18-20 GPa. The eutectic intergrowths of FeNi-metal and troilite are proposed to have crystallized during meteorite cooling and solidified at the last stage of vein formation.The mineralogy of shock vein matrix in the Suizhou meteorite has been investigated by optical and transmission electron microscopy. It was revealed that the vein matrix is composed of majorite-pyrope garnet, magnesiowüstite, and ringwoodite, with FeNi–FeS intergrowths. The observation and character of ring-like selected electron diffraction(SAED) patterns indicate that the idiomorphic garnet crystals in the vein matrix have different orientations. The polycrystalline nature of magnesiowüstite is also confirmed by a ring-like SAED pattern.Both garnet and magnesiowüstite crystals showed sharp diffraction spots, signifying the good crystallinity of these two minerals. The SAED pattern of cryptocrystalline ringwoodite shows only diffuse concentric diffraction rings. FeNi metal and troilite(FeS), which were molten during the shock event, occur in the matrix as fine eutectic FeNi–FeS intergrowths filling the interstices between garnet and magnesiowüstite grains. Based on the phase diagram of the Allende chondrite and the results of this TEM study, it is inferred that majorite-pyrope garnet first crystallized from the Suizhou chondritic melt at 22–26 GPa,followed by crystallization of magnesiowüstite at 20–24 GPa, and then ringwoodite at 18–20 GPa. The eutectic intergrowths of FeNi-metal and troilite are proposed to have crystallized during meteorite cooling and solidified at the last stage of vein formation.
关 键 词:Suizhou meteorite Shock vein matrix. High-pressure minerals Transmission electron microscopy
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...