检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:兰星[1,2] 李伟[2] 王兴亮[2] 颜佳冰[2] 蒋孟燃 林宝勤[2]
机构地区:[1]空军大连通信士官学校,辽宁大连116600 [2]空军工程大学信息与导航学院,西安710077
出 处:《计算机应用研究》2016年第7期2102-2105,共4页Application Research of Computers
基 金:国家自然科学基金资助项目(61302153;61471387);航空基金资助项目(20140196003);航天科技创新基金资助项目(CASC020302)
摘 要:针对杂波背景多输入多输出(MIMO)雷达与目标博弈问题,从最小均方误差(MMSE)估计角度提出两种可行的雷达波形设计优化策略,结合两步注水算法得到不同策略下的博弈方案。基于Stackelberg均衡模型,博弈方案用注水法分配目标干扰功率,用通用注水法分配雷达信号功率。仿真比较了杂波背景两种优化策略下雷达先行的博弈方案,结果表明优化策略2得到的MMSE值更小,证明了优化策略2的有效性;但雷达信号和目标干扰总功率均较小时,优化策略2反而不如优化策略1,对雷达正确选择优化策略以赢得与目标的博弈有一定借鉴意义。In order to solve the game problem between MIMO radar and target in the presence of clutter, this paper proposed two available optimization strategies for waveform design from the perspective of MMSE, and obtained game schemes at different optimization strategy with two-step water-filling. Based on Stackelberg equilibrium, game schemes distributed jamming power by water-filling, and distributed signal power by generalized water-filling. Experiments compared two optimization strategies in ra- dar-first game scheme. The simulation results indicate that the second optimization strategy can make MMSE down obviously, so it proves the availability of the second optimization strategy, but the effect is not ideal when both signal power and jamming power are low. It is valuable for MIMO radar to make the right choice of optimization strategy to win the game.
关 键 词:多输入多输出雷达 最小均方误差 STACKELBERG博弈 优化策略
分 类 号:TN957.51[电子电信—信号与信息处理] TP301.6[电子电信—信息与通信工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222