检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:朱宇兰
出 处:《山东农业大学学报(自然科学版)》2016年第3期473-476,480,共5页Journal of Shandong Agricultural University:Natural Science Edition
摘 要:GPU通用计算是近几年来迅速发展的一个计算领域,以其强大的并行处理能力为密集数据单指令型计算提供了一个绝佳的解决方案,但受限制于芯片的制造工艺,其运算能力遭遇瓶颈。本文从GPU通用计算的基础——图形API开始,分析GPU并行算法特征、运算的过程及特点,并抽象出了一套并行计算框架。通过计算密集行案例,演示了框架的使用方法,并与传统GPU通用计算的实现方法比较,证明了本框架具有代码精简、与图形学无关的特点。GPGPU(General Purpose Computing on Graphics Processing Unit) is a calculation mothed that develops quiet fast in recent years, it provide an optimal solution for the intensive data calculation of a single instruction with a powerful treatment, however it is restricted in CPU making process to lead to entounter the bottleneck of hardware manufacture. This paper started from GPGPU by Graphics API to analyze the featuers, progress and characteristics of GPU parallel algorithm and obtained a set of computing framework to demonstrate it by an intensive line calculation and compared between the traditional GPU and the parallel computing framework to turn out to show that there was a simplified code and had nothing to do with graphics.
分 类 号:TN202[电子电信—物理电子学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.139.72.238