面向机加工表面粗糙度的光切显微视觉测量系统  被引量:7

Optical cutting microvision measurement system for machining surface roughness

在线阅读下载全文

作  者:金守峰[1] 陈蓉[1] 范荻[1] 田明锐[2] 

机构地区:[1]西安工程大学机电工程学院,陕西西安710048 [2]长安大学高速公路施工机械陕西省重点实验室,陕西西安710064

出  处:《西安工程大学学报》2016年第3期347-353,共7页Journal of Xi’an Polytechnic University

基  金:高速公路施工机械陕西省重点实验室开放基金(310825161123);西安工程大学教学改革项目(2014JG06)

摘  要:为解决光切显微镜测量机加工表面粗糙度的测量精度不高、效率低的问题,在光切法测量原理的基础上,开发了基于光切显微镜的表面粗糙度视觉测量系统.通过视觉传感器获取机加工表面的微观轮廓图像,提出了基于Zernike矩的轮廓亚像素边缘检测算法,建立了最大类间方差法与传统Zernike矩相结合的模型,提高了轮廓亚像素边缘点的定位精度.采用最小二乘拟合法确定了轮廓基准中线,根据表面粗糙度的国家标准建立了轮廓算术平均偏差R_a的数学模型,实现了机加工表面粗糙度的测量.结果表明,机加工表面精度等级在7~10级时,所测量表面粗糙度的相对误差不超过5%,算法耗时约15ms.该测量系统具有较好的精度和实时性,提高了测量效率.In order to solve the problem of light cutting microscope's low measurement accuracy and poor efficiency of the machining surface, the vision measurement system over the surface roughness of light cutting microscope is developed based on the theory of light cutting measurement. A visual sensor is used to get the micro profile images of the machining surface, then the contour sub pixel edge detec- tion algorithm is proposed based on the Zernike moments, and a model which combines the maximum between class variance method and the traditional Zernike moments is established,and the positioning accuracy of the contour sub pixel edge is improved. The adoption of the least square fitting method determines the contour datum line. According to the national standard of surface roughness, the mathe- matical model of the arithmetical mean deviation of the profile Ra is established, achieving the machined surface roughness measurement. Test results show that when the surface machining accuracy achieves level 7 to 10,the relative error of the measured surface roughness is no more than 5% ,the algorithm takes about 15ms. The measurement system is accurate, and it improves the efficiency of the measurement.

关 键 词:表面粗糙度 光切显微镜 ZERNIKE矩 亚像素 最小二乘中线 

分 类 号:TN247[电子电信—物理电子学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象