检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]河南理工大学万方科技学院,河南郑州451400 [2]南阳广播电视大学,河南南阳473036
出 处:《实验室研究与探索》2016年第5期141-145,244,共6页Research and Exploration In Laboratory
摘 要:提出一种改进的事件检测算法,通过交叉特征学习实现相关样本的自适应利用。首先将相关性水平看成是有序标签,利用标签候选集中相邻两个相关性标签的最大容限准则进行模型学习。然后采用多核学习理论来定义标签加权问题,通过交叉特征预测来更新标签候选集合。重复上述步骤直到算法收敛为止,将最终获得的统一检测器用于事件检测。利用大规模TRECVID 2011数据集来测试本文算法,实验结果表明,就平均精度和Pmiss值而言,本文算法的检测性能优于当前其他算法。It is difficult to realize the complex event detection using the relevant samples while multiple features are available. Relevant samples share certain positive elements of the event,but have no uniform pattern due to the huge variance of relevance levels among different relevant samples. The existing detection schemes lack consideration of the correlation between the event features,and weaken the accuracy of event detection. In this paper,an improved algorithm is proposed which adaptively utilizes the relevant samples by cross-feature learning. Firstly,the relevance levels are treated as ordinal labels,and we learn the model with the maximum margin criterion between the consecutive relevance labels from a label candidates set. Then the label weighting problem is formulated based on the multiple kernel learning theory,we update the label candidate set from the prediction of cross-feature. The procedure is repeated until convergence and the final unified detector is used for event detection. We test our algorithm using the large scale TRECVID 2011 dataset,experimental results show that the detection performance of the proposed algorithm is superior to other current algorithms in terms of average accuracy and Pmiss value.
关 键 词:复杂事件检测 相关样本 交叉特征学习 标签候选集 平均精度
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15