检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]太原理工大学机械工程学院,山西太原030024 [2]山西焦煤集团有限责任公司博士后科研工作站,山西太原030022
出 处:《煤炭学报》2016年第5期1309-1315,共7页Journal of China Coal Society
基 金:山西省科技重大专项资助项目(20111101040);山西省青年基金资助项目(2014021024-2)
摘 要:针对传统提升机故障诊断系统中知识获取困难、知识表示单一且故障诊断推理方法自适应能力弱从而导致诊断推理结果不稳定等问题,研究了面向知识工程的提升机智能故障诊断方法。重点针对提升机故障诊断过程中的三大关键科学问题,即知识获取、知识表示和知识推理技术进行了深入研究:提出了基于融合差别矩阵和属性重要度的提升机故障诊断规则知识获取方法,为提升机故障诊断提供了数据基础;构建本体知识库,提出了基于OWL DL的故障诊断知识表示方法和基于SWRL的故障诊断规则知识表示方法,实现了提升机系统结构及诊断知识的集成;对本体知识进行了概率扩展,提出了基于本体和贝叶斯网络的不确定性知识融合推理方法,提高了推理的效率和准确率。开发了面向知识工程的智能故障诊断系统,通过实例验证和企业应用证明了该方法的可行性和准确性。To overcome the instability of the diagnostic reasoning results caused by the difficulty in knowledge acquisi-tion,the single knowledge representation,and the poor self-adaptation ability of fault diagnosis reasoning method in tra-ditional hoist fault diagnosis systems,the hoist fault diagnosis method based on knowledge engineering is investigated.Fault diagnostic rule knowledge acquisition methods based on improved attribute importance is proposed,and it pro-vides a data basis for hoist fault diagnosis. The mine hoist fault diagnostic ontology knowledge base is constructed andthe fault diagnostic ontology knowledge representation methods based on OWL DL and fault diagnostic rule knowledgerepresentation methods based on SWRL are proposed,and the hoist system structure and the diagnosis knowledge inte-gration are implemented. The probability of the ontology knowledge is extended,and a new fault diagnosis uncertaintyknowledge reasoning method is proposed,which are based on ontology and Bayesian. Based on the theory and methodabove,the fault monitoring and diagnosis system of the mine hoist is developed,and the method is proved to be feasibleand reliabile.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.222.194.128