检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]广州大学减震控制与结构安全国家重点实验室(培育),广州510405
出 处:《振动与冲击》2016年第12期13-21,共9页Journal of Vibration and Shock
基 金:"973"重点基础研究发展计划(2011CB013606);"十二五"国家科技支撑计划(2012BAJ07B02);国家自然科学基金(U1334209)
摘 要:单自由度模型被广泛应用于规则中、低墩梁桥的抗震分析和设计,而高墩梁桥由于墩身高阶振型的影响,有必要发展多自由度甚至分布参数体系的简化分析模型和方法。基于分布参数欧拉梁理论对单墩-质点体系进行解析推导,分析了体系动力特性和振型质量分布的控制因素和规律,从纯解析角度更为严格的证明梁-墩质量比是决定体系水平向振型质量参与系数的主要因素。解释了已有数值分析结果给出的统计规律,纯解析给出比已有数值拟合公式精度更高、适用范围更广的分析公式,探讨了高阶振型的影响,最后给出手算评估等效单自由度模型有效性的建议公式。The single degree of freedom model was widely applied in anti-seismic analysis and was designed for regular girder bridges with medium-length or short-length piers.For girder bridges with tall piers,due to the obvious influence of higher-order modes,a simplified model and a method with multiple degrees of freedom or even with distributed parameters still need to be developed.In this paper,based on the theory of the Euler beam with distributed parameters,analytical derivation is presented for the single column and the mass system.The dynamical characteristics and modal mass distributions,as well as their control factors and properties,are studied.It is proved analytically and more clearly that the girder-pier mass ratio plays a dominant role in determining horizontal modal mass participation. Thus,interpretation of the previous conclusion based on statistical and numerical analysis is presented.Purely analytical formulas,which show higher accuracy and better applicability than the previous numerical fitting formulas,are also given. The influence of a higher-order vibration mode is analyzed and discussed.Finally,the manual calculation formula,for efficiency assessment of the single degree of freedom model,is also proposed.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.43